【题目】如图,在平行四边形ABCD中,过对角线BD上一点P作EF∥AB,GH∥AD,与各边交点分别为E. F. G、H,则图中面积相等的平行四边形的对数有______对;
【答案】3
【解析】
平行四边形的对角线将平行四边形分成两个面积相等的三角形.所以三角形ABD的面积等于三角形BCD的面积.三角形BFP的面积等于BGP的面积,三角形PED的面积等于三角形HPD的面积,从而可得到PFCH的面积等于AGPE的面积,同时加上一个公共的平行四边形,可以得出答案有三个.
∵ABCD为平行四边形,BD为对角线,
∴△ABD的面积等于△BCD的面积,
同理△BFP的面积等于△BGP的面积,△PED的面积等于△HPD的面积,
∵△BCD的面积减去△BFP的面积和PHD的面积等于平行四边形PFCH的面积,△ABD的面积减去△GBD和△EPD的面积等于平行四边形AGPE的面积。
∴平行四边形PFCH的面积=平行四边形AGPE的面积,
∴同时加上平行四边形PHDE和BFPG,
可以得出平行四边形AGHD面积和平行四边形EFCD面积相等,平行四边形ABFE和平行四边形BCHG面积相等。
所以有3对面积相等的平行四边形
故答案为:3.
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,作斜边AB上中线CD,得到第1个三角形ACD;于点E,作斜边DB上中线EF,得到第2个三角形DEF;依次作下去则第1个三角形的面积等于______,第n个三角形的面积等于______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五一”长假期间旅游情况统计图,根据以下信息解答下列问题:
(1)2017年“五一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图.
(2)根据近几年到该市旅游人数增长趋势,预计2018年“五一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?
(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图的正方形网格中,每一个小正方形的边长为1.格点三角形 ABC (顶点是网格线交点的三角形)的顶点 A ,C 的坐标分别是(-4 ,6) ,(-1,4) .
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出△ABC 关于 x 轴对称的△A1B1C1 ;并直接写出A1B1C1的坐标.
(3)请在 y 轴上求作一点 P ,使△PB1C 的周长最小,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘轮船位于灯塔B的正西方向A处,且A处与灯塔B相距60海里,轮船沿东北方向匀速航行,到达位于灯塔B的北偏东l5°方向上的C处.
(1)求∠ACB的度数;
(2)求灯塔B到C处的距离.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于A(1,0),B(﹣3,0)两点,现有经过点A的直线l:y=kx+b1与y轴交于点C,与抛物线的另个交点为D.
(1)求抛物线的函数表达式;
(2)若点D在第二象限且满足CD=5AC,求此时直线1的解析式;在此条件下,点E为直线1下方抛物线上的一点,求△ACE面积的最大值,并求出此时点E的坐标;
(3)如图,设P在抛物线的对称轴上,且在第二象限,到x轴的距离为4,点Q在抛物线上,若以点A,D,P,Q为顶点的四边形能否成为平行四边形?若能,请直接写出点Q的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】重庆八中的老师工作很忙,但初一年级很多数学老师仍然坚持锻炼身体,比如张老师就经常坚持饭后走一走.某天晚饭后他从学校慢步到附近的中央公园,在公园里休息了一会后,因学校有事,快步赶回学校.下面能反映当天张老师离学校的距离y与时间x的关系的大致图象是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com