【题目】如图,(1)指出DC和AB被AC所截得的内错角;
(2)指出AD和BC被AE所截得的同位角;
(3)指出∠4与∠7,∠2与∠6,∠ADC与∠DAB各是什么关系的角,并指出各是哪两条直线被哪一条直线所截形成的.
【答案】(1)∠1和∠5;(2)∠DAB和∠9;(3)∠4和∠7是内错角,是直线DC和AB被DB所截形成的;∠2与∠6是内错角,是直线AD和BC被AC所截形成的;∠ADC和∠DAB是同旁内角,是直线DC和AB被AD所截形成的
【解析】
(1)根据内错角就是:两个角都在截线的两侧,又分别处在被截的两条直线中间位置的位置的角,可得答案;
(2)根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,可得答案;
(3)根据同旁内角就是:两个角都在截线的同旁,又分别处在被截的两条直线中间的位置的角,根据内错角就是:两个角都在截线的两侧,又分别处在被截的两条直线中间位置的位置的角,根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,可得答案.
(1) DC和AB被AC所截得的内错角是∠1和∠5;
(2) AD和BC被AE所截得的同位角是∠DAB和∠9;
(3)∠4和∠7是内错角,是直线DC和AB被DB所截形成的;
∠2与∠6是内错角,是直线AD和BC被AC所截形成的;
∠ADC和∠DAB是同旁内角,是直线DC和AB被AD所截形成的.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.
(1)求证:△ADE≌△CDB;
(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠ABC=50°,∠ACB=80°,延长 CB 至 D,使 DB=BA,延长 BC 至 E,使 CE=CA,连接 AD 和 AE,求∠D,∠DAE 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C是线段AB上除A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边三角形ACD和等边三角形BEC,连结AE交DC于M,连结BD交CE于N,AE与BD交于F
(1)求证:AE=BD;
(2)连结MN,仔细观察△MNC的形状,猜想△MNC是什么三角形?说出你的猜想,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为_______.
(2)若(4x﹣y)2=9,(4x+y)2=169,求xy的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,(1)∠2与∠B是什么角?若∠1=∠B,则∠2与∠B有何数量关系?请说明理由.
(2)∠3与∠C是什么角?若∠4+∠C=180°,则∠3与∠C有何数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在质量检测中,从每盒标准质量为125克的酸奶中,抽取6盒,结果如下:
编号 | 1 | 2 | 3 | 4 | 5 | 6 |
质量(克) | 126 | 127 | 124 | 126 | 123 | 125 |
差值(克) | +1 |
(1)补全表格中相关数据;
(2)请你利用差值列式计算这6盒酸奶的质量和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)|-2|÷(-)+(-5)×(-2); (2)(-+)×(-24);
(3)15÷(-+); (4)(-2)2-|-7|-3÷(-)+(-3)3×(-)2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A. 角的内部到角的两边的距离相等的点在角的平分线上
B. 角平分线上的点到这个角两边的距离相等
C. 三角形三条角平分线的交点到三条边的距离相等
D. 三角形三条垂直平分线的交点到三个定点的距离相等
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com