【题目】如图,在中,,点、 点分别在线段和线段上, 平分.
如图1,求证:.
如图2,若.求证:.
在问的条件下,如图3, 在线段上取一点,使.过点作交于点,作交于点,连接,交于点,连接,交于点,若,求的长.
【答案】(1)见解析;(2)见解析;(3)DT=-1
【解析】
(1)先根据∠AED+∠ADB=180°,∠ADB+∠ADC=180°,得出∠AED=∠ADC,进而得到△ADE∽△ACD,即可得出∠ADE=∠C=90°;
(2)先设BE=x,则AE=2x,通过证明△ADB∽△DEB,列比例式可得BD的长,根据三角函数可得∠EAD=∠CAD=30°,可得结论;
(3)如图3,过E作ER⊥BC于R,延长ED、AC交于点M,过G作GN⊥EM于N,先根据AE=2BE,可得BE和ED的长,设FL=x,根据AF=AL+FL列方程可得x的值,表示KD、KN和GN的长,根据DT∥NG,得△KDT∽△KNG,列比例式可得DT的长.
证明:(1)如图1,∵AD平分∠BAC,
∴∠BAD=∠CAD,
∵∠AED+∠ADB=180°,∠ADB+∠ADC=180°,
∴∠AED=∠ADC,
∴△ADE∽△ACD,
∴∠ADE=∠C=90°,
∴AD⊥DE;
(2)如图2,设BE=x,则AE=2x,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∵∠AED+∠ADB=180°,
∠AED+∠BED=180°,
∴∠ADB=∠BED,
∵∠B=∠B,
∴△ADB∽△DEB,
∴,
∴,
∴BD2=3x2,
∴BD=x,
∴,
∴∠AED=60°,
∴∠EAD=∠CAD=30°,
∴∠B=30°,
∴AB=2AC;
(3)如图3,过E作ER⊥BC于R,延长ED、AC交于点M,过G作GN⊥EM于N,
∵AE=2+2,AE=2BE,
∴BE=+1,
∵∠ADC=60°,∠ADE=90°,
∴∠EDB=∠B=30°,
∴BE=DE=+1,
∴BD=2BR,
Rt△BER中,ER=BE=BR=,
∴BD=2BR=3+=AD=AF,
Rt△ADC中,∠DAC=30°,
∴DC=AD=,CM=,
DM=+1,
Rt△EFK中,EF=AE-AF=2+2-(+3)=-1,
∵∠AEK=60°,
∴EK=2EF=2-2,
∴DK=+1-(2-2)=3-,
∵∠AFH=45°,∠FAH=30°=∠GAH,
∴∠AHG=75°,∠AGH=180°-30°-75°=75°,
∴AG=AH,
过H作HL⊥AF于L,
∵∠LFH=45°,
∴FL=HL,
设FL=x,则HL=x,AH=AG=2x,AL=x,
∵AL+FL=AF,
∴x+x=3+,
x=,
∴AG=2,
∴CG=AC-AG=AB-AG=(2+2++1)-2,
∴GM=CG+CM=2,
R△GNM中,∠M=60°,∠NGM=30°,
∴MN=GM=1,
∴DN=DM-MN=+1-1=,GN=,
∴KN=KD+DN=3-+=3,
∵DT//NG,
∴△KDT∽△KNG,
∴,
∴,
∴DT=-1.
科目:初中数学 来源: 题型:
【题目】对于平面中给定的一个图形及一点 P,若图形上存在两个点 A、B,使得△PAB 是边长为 2 的等边三角形,则称点 P 是该图形的一个“美好点”.
(1)若将 x 轴记作直线 l,下列函数的图象上存在直线 l 的“美好点”的是 (只填选项)
A.正比例函数 y x
B.反比例函数 y
C.二次函数 y x 2
(2)在平面直角坐标系 xOy 中,若点 M (n, 0) , N (0, n) ,其中n0 ,⊙O 的半径为 r.
①若r 2,⊙O 上恰好存在 2 个直线 MN 的“美好点”,求 n 的取值范围;
②若n4 ,线段 MN 上存在⊙O 的“美好点”,直接写出 r 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,为等腰三角形,是底边的中点,腰与相切于点,底交于点,.
(1)求证:是的切线;
(2)如图2,连接,交于点,点是弧的中点,若,,求的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年9月28日,重庆八中80周年校庆在渝北校区隆重举行,学校总务处购买了红,黄,蓝三种花卉装扮出甲,乙,丙,丁四种造型,其中一个甲造型需要15盆红花,10盆黄花,10盆蓝花;一个乙造型需要5盆红花,7盆黄花,6盆蓝花;一个丙造型需要7盆红花,8盆黄花,9盆蓝花;一个丁造型需要6盆红花,4盆黄花,4盆蓝花,若一个甲造型售价1800元,利润率为20%,一个乙和一个丙造型一共成本和为1830元,且一盆红花的利润率为25%,问一个丁造型的利润率为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点M为顶点,连接OM,若y与x的部分对应值如表所示:
x | … | ﹣1 | 0 | 3 | … |
y | … | 0 | 0 | … |
(1)求抛物线的解析式;
(2)抛物线与y轴交于点C,点Q是直线BC下方抛物线上一点,点Q的横坐标为xQ.若S△BCQ≥S△BOC,求xQ的取值范围;
(3)如图2,平移此抛物线使其顶点为坐标原点,P(0,﹣1)为y轴上一点,E为抛物线上y轴左侧的一个动点,从E点发出的光线沿EP方向经过y轴上反射后与此抛物线交于另一点F.则当E点位置变化时,直线EF是否经过某个定点?如果是,请求出此定点的坐标;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com