【题目】某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:
销售量n(件) | n=50﹣x |
销售单价m(元/件) | m=20+x |
(1)请计算第几天该商品单价为25元/件?
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;
(3)这30天中第几天获得的利润最大?最大利润是多少?
【答案】(1)第10天时该商品的销售单价为25元/件;(2)y=﹣x2+15x+500;(3) 这30天中第15天获得的利润最大,最大利润是元.
【解析】
(1)将m=25代入m=20+x,求得x即可;
(2)根据“总利润=单件利润×销售量”可得函数解析式;
(3)将(2)中所得函数解析式配方成顶点式后,根据二次函数的性质即可得.
解:(1)当m=25时,20+x=25,
解得:x=10,
所以第10天时该商品的销售单价为25元/件;
(2)y=n(m﹣10)
=(50﹣x)(20+x﹣10)
=﹣x2+15x+500;
(3)y=﹣x2+15x+500
=﹣(x﹣15)2+ ,
∴当x=15时,y最大=,
答:这30天中第15天获得的利润最大,最大利润是元.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.
(1)求证:AB是⊙O的切线;
(2)若AC=8,tan∠BAC=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一面与地面垂直的围墙的同侧有一根高13米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,数学兴趣小组的同学进行了如下测量某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为3米,落在地面上的影子BF的长为8米,而电线杆落在围墙上的影子GH的长度为米,落在地面上的影子DH的长为6米,依据这些数据,该小组的同学计算出了电线杆的高度是______米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某综合实践小组为了了解本校学生参加课外读书活动的情况,随机抽取部分学生,调查其最喜欢的图书类别,并根据调查结果绘制成如下不完整的统计表与统计图:
图书类别 | 画记 | 人数 | 百分比 | ||
文学类 | |||||
艺体类 | 正 | 5 | |||
科普类 | |||||
其他 | 正正 | 14 | |||
合计 | a | 100% |
请结合图中的信息解答下列问题:
(1)随机抽取的样本容量为________;
(2)在扇形统计图中,“艺体类”所在的扇形圆心角应等于_________度;
(3)补全条形统计图;
(4)已知该校有名学生,估计全校最喜欢文学类图书的学生有________人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD放在每格宽度都为6mm的横格纸中,恰好四个顶点都在横格线上,已知a=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)
(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由
(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;
(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点是等边内一点, .将绕点按顺时针方向旋转得,连接.
(1)求证: 是等边三角形;
(2)当时,试判断的形状,并说明理由;
(3)探究:当为多少度时, 是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△ADE中,AB=AD, AC=AE, ∠1=∠2
(1)求证:△ABC≌△ADE;
(2)找出图中与∠1 ,∠2相等的角(用图中给出的已知点直接写出结论,不需证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com