【题目】如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)
(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由
(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;
(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,说明理由.
【答案】(1);(2)S=t2﹣2t+8(0<t<2);(3).
【解析】
由题意可得:由运动知,DP=t,AQ=2t,得出AP=4-t,BQ=4-2t,
(1)判断出AQ=AP,得出2t=4-t,即可;
(2)直接利用面积的和差即可得出结论;
(3)先判断 =,再得到,从而得出解方程即可得出结论.
解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD=4,
由运动知,DP=t,AQ=2t,
∴AP=4﹣t,BQ=4﹣2t,
(1)连接BD,如图1,
∵AB=AD,
∴∠ABD=∠ADB,
∵PQ∥BD,
∴∠ABD=∠AQP,∠APQ=∠ADB,
∴∠APQ=∠AQP,
∴AQ=AP,
∴2t=4﹣t,
∴t=;
(2)S=S正方形ABCD﹣S△APQ﹣S△BCQ﹣S△CDP
=AB2﹣AQ×AP﹣BQ×BC﹣DP×CD
=16﹣×2t×(4﹣t)﹣×(4﹣2t)×4﹣t×4
=16+t2﹣4t﹣8+4t﹣2t
=t2﹣2t+8(0<t<2);
(3)如图2,
过点C作CN⊥PQ于N,
∴S△MCQ=MQ×CN,S△MCP=MP×CN,
∵S△QCM:S△PCM=3:5,
∴ = ,
∴,
过点M作MG⊥AB于G,MH⊥AD于H,
∵点M是正方形ABCD的对角线AC上的一点,
∴MG=MH,
∴S△AMQ=AQ×MG,S△APM=AP×MH,
∴
∴
∴t= .
科目:初中数学 来源: 题型:
【题目】 从大拇指开始,按照大拇指→食指→中指→无名指→小指→无名指→中指→食指→大拇指→食指……的顺序,依次数整数1、2、3、4、5,6、7、…,当数到4019时对应的手指为_____;当第n次数到无名指时,数到的数是_____(用含n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“十·一”黄金周期间,武汉动物园在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人数变化单位:万人 | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.2 |
(1)若9月30日的游客人数记为,请用的代数式表示10月2日的游客人数?
(2)请判断七天内游客人数最多的是哪天?请说明理由。
(3)若9月30日的游客人数为2万人,门票每人10元。问黄金周期间武汉动物园门票收入是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下数表是由1开始的连续自然数组成的,观察规律并完成各题的解答.
(1)表示第9行的最后一个数是 .
(2)用含n的代数式表示:第n行的第一个数是 ,第n行共有 个数;第n行各数之和是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解学校开展“孝敬父母,从家务劳动做起”活动的实施情况,该校抽取八年级50名学生,调查他们一周(按七天计算)做家务所用时间(单位:小时)得到一组数据,绘制成下表:
时间x(小时) | 划记 | 人数 | 所占百分比 |
0.5x≤x≤1.0 | 正正 | 14 | 28% |
1.0≤x<1.5 | 正正正 | 15 | 30% |
1.5≤x<2 | 7 |
| |
2≤x<2.5 | 4 | 8% | |
2.5≤x<3 | 正 | 5 | 10% |
3≤x<3.5 | 3 |
| |
3.5≤x<4 |
| 4% | |
合计 | 50 | 100% |
(1)请填表中未完成的部分;
(2)根据以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比是多少?
(3)针对以上情况,写出一个20字以内的倡导“孝敬父母,热爱劳动”的句子.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在研究位似问题时,甲、乙同学的说法如下:
甲:如图①,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点B,F的坐标分别为(﹣4,4),(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(点P在GC上)是位似中心,则点P的坐标为(0,2).
图① 图②
乙:如图②,正方形网格中,每个小正方形的边长是1个单位长度,以点C为位似中心,在网格中画△A1B1C1,使△A1B1C1与△ABC位似,且△A1B1C1与△ABC的位似比为2:1,则点B1的坐标为(4,0).
对于两人的观点,下列说法正确的是( )
A. 两人都对 B. 两人都不对 C. 甲对乙不对 D. 甲不对乙对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,已知点O,A的坐标分别为(0,0),(﹣3,﹣2).
(1)点B的坐标是 ,点B与点A的位置关系是 .现将点B,点A都向右平移5个单位长度分别得到对应点C和D,顺次连接点A,B,C,D,画出四边形ABCD;
(2)横、纵坐标都是整数的点成为整数点,在四边形ABCD内部(不包括边界)的整数点M使S△ABM=8,请直接写出所有点M的可能坐标;
(3)若一条经过点(0,﹣4)的直线把四边形ABCD的面积等分,则这条直线的表达式是 ,并在图中画出这条直线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一条笔直的公路依次经过A,B,C三地,且A,B两地相距1000m,B,C两地相距2000m.甲、乙两人骑车分别从A,B两地同时出发前往C地.
(1)若甲每分钟比乙多骑100m,且甲、乙同时到达C地 ,求甲的速度;
(2)若出发5 min,甲还未骑到B地,且此时甲、乙两人相距不到650m,请判断谁先到达C地,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com