【题目】“十·一”黄金周期间,武汉动物园在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人数变化单位:万人 | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.2 |
(1)若9月30日的游客人数记为,请用的代数式表示10月2日的游客人数?
(2)请判断七天内游客人数最多的是哪天?请说明理由。
(3)若9月30日的游客人数为2万人,门票每人10元。问黄金周期间武汉动物园门票收入是多少元?
【答案】(1)(2)10月3日 (3)272(万元)
【解析】
(1)10月2日的游客人数=a+1.6+0.8.
(2)分别用a的代数式表示七天内游客人数,再找出最多的人数,以及对应的日期即可.
(3)先把七天内游客人数分别用a的代数式表示,再求和,把a=2代入化简后的式子,乘以80即可得黄金周期间该公园门票的收入.
(1)a+2.4;
(2)七天内游客人数分别是a+1.6,a+2.4,a+2.8,a+2.4,a+1.6,a+1.8,a+0.6,
所以3日人最多.
(3)(a+1.6)+(a+2.4)+(a+2.8)+(a+2.4)+(a+1.6)+(a+1.8)+(a+0.6)=7a+13.2(万人),当a=2时,7a+13.2=27.2(万人),
∴“十一”期间所有在游园人员在湿地公园的总消费是27.2 ×10000 ×10=2720000=2.72×106(元)=272(万元)
科目:初中数学 来源: 题型:
【题目】已知:如图,在平行四边形ABCD和矩形ABEF中,AC与DF相交于点G.
(1) 试说明DF=CE;
(2) 若AC=BF=DF,求∠ACE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解题:
定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么形如a+bi(a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣4i)=5﹣3i.
(1)填空:i3= ,2i4= ;
(2)计算:①(2+i)(2﹣i);
②(2+i)2;
(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+3y)+3i=(1﹣x)﹣yi,(x,y为实数),求x,y的值.
(4)试一试:请你参照i2=﹣1这一知识点,将m2+25(m为实数)因式分解成两个复数的积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.
(1)求y与x的函数解析式;
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在桌面上,有若干个完全相同的小正方体堆成的一个几何体,如图所示.
(1)请画出这个几何体的三视图.
(2)若将此几何体的表面喷上红漆(放在桌面上的一面不喷),则三个面上是红色的小正方体有_______个.
(3)若现在你的手头还有一些相同的小正方体可添放在几何体上,要保持主视图和左视图不变,则最多可以添加________个小正方体.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;
若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学完“有理数的运算”后,我市某中学七年级每班各选出5名学生组成一个代表队,在数学老师的组织下进行一次知识竞赛.竞赛规则是:每队都必须回答50道题,答对一题得4分,不答或答错一题倒扣1分.
(1)如果七年级一班代表队最后得分为190分,那么七年级一班代表队回答对了多少道题?
(2)七年级二班代表队的最后得分有可能为142分吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)
(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由
(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;
(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,O为坐标原点,点A(﹣4,0),直线l∥x轴,交y轴于点C(0,3),点B(﹣4,3)在直线l上,将矩形OABC绕点O按顺时针方向旋转α度,得到矩形OA′B′C′,此时直线OA′、B′C′分别与直线l相交于点P、Q.
(1)当α=90°时,点B′的坐标为 .
(2)如图2,当点A′落在l上时,点P的坐标为 ;
(3)如图3,当矩形OA′B′C′的顶点B′落在l上时.
①求OP的长度;②S△OPB′的值是 .
(4)在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能否成为平行四边形?如果能,请直接写出点B′和点P的坐标;如果不能,请简要说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com