分析 根据题意可判定△AEF∽△ABC,利用面积比等于相似比平方可得出△ABC的面积,继而根据S四边形EBCF=S△ABC-S△AEF,即可得出答案.
解答 解:∵$\frac{AE}{EB}=\frac{AF}{FC}=\frac{1}{2}$,
∴EF∥BC,
∴△AEF∽△ABC,
∴$\frac{{S}_{△AEF}}{{S}_{△ABC}}$=($\frac{AE}{AB}$)2=($\frac{1}{3}$)2=$\frac{1}{9}$,
∴S△ABC=27,
则S四边形EBCF=S△ABC-S△AEF=27-3=24.
故答案为:24.
点评 本题考查了相似三角形的判定与性质,解答本题的关键是证明△AEF∽△ABC,要求同学们熟练掌握相似三角形的面积比等于相似比平方.
科目:初中数学 来源: 题型:选择题
| A. | y=x2-1 | B. | y=x2+1 | C. | y=(x-1)2 | D. | y=(x+1)2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com