精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数的图像与轴交于两点(在点的左侧),与轴交于点,且.

(1)求线段的长度:

(2)若点在抛物线上,点位于第二象限,过,垂足为.已知,求点的坐标.

【答案】1AC=4

2P-1,4)或(-2,3.

【解析】

1)求出B点坐标,再利用OA=OB求出A点坐标,代入二次函数求出解析式,再令y=0即可求出与x轴的交点坐标,进而即可解题;(2)作PFx轴于F,利用∠BAO=45°,证明三角形PQF是等腰直角三角形,求出PF=2,再设出P,F的坐标,代入直线解析式求解方程即可解题.

解:(1)由可知二次函数与y轴的交点为B0,3

OA=OB,

A-3,0,

A点代入二次函数解析式得:b=-2,即二次函数解析式为,

y=0,解得:x1=-3,x2=1,

C1,0

AC=4,

2)过点PPFx轴于F,

A,B坐标可得直线AB的解析式为y=x+3,

∴∠BAO=45°,

又∵, PFx轴

∴三角形PQF是等腰直角三角形,

P(a,b),

P在抛物线上,

b=-a2-2a+3,

PF=2(勾股定理),

Fa+2, -a2-2a+3

F代入y=x+3,-a2-2a+3=a+5,

解得a1=-1,a2=-2,

P-1,4)或(-2,3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形, AC为直径, DEBC,垂足为E

1)求证:CD平分∠ACE

2)若AC9CE3,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1y=﹣x与反比例函数y的图象交于AB两点(点A在点B左侧),已知A点的纵坐标是2

1)求反比例函数的表达式;

2)根据图象直接写出﹣x的解集;

3)将直线l1y=- x沿y向上平移后的直线l2与反比例函数y在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,点B关于AD的对称点为B′,连接AB′CB′CB′ADF点.

1)如图1,∠ABC=90°,求证:FCB′的中点;

2)小宇通过观察、实验、提出猜想:如图2,在点B绕点A旋转的过程中,点F始终为CB′的中点.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:

想法1:过点B′B′GCDADG点,只需证三角形全等;

想法2:连接BB′ADH点,只需证HBB′的中点;

想法3:连接BB′BF,只需证∠B′BC=90°

请你参考上面的想法,证明FCB′的中点.(一种方法即可)

3)如图3,当∠ABC=135°时,AB′CD的延长线相交于点E,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:

(1)图形ABCD与图形A1B1C1D1关于直线MN成轴对称,请在图中画出对称轴并标注上相应字母MN

(2)以图中O点为位似中心,将图形ABCD放大,得到放大后的图形A2B2C2D2,则图形ABCD与图形A2B2C2D2的对应边的比是多少(注:只要写出对应边的比即可)

(3)求图形A2B2C2D2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某课桌生产厂家研究发现,倾斜12°24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CDAC30 cm.

(1)如图2,当∠BAC24°时,CDAB,求支撑臂CD的长;

(2)如图3,当∠BAC12°时,求AD的长.(结果保留根号)

(参考数据:sin 24°≈0.40cos 24°≈0.91tan 24°≈0.46sin 12°≈0.20)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,弦AB=CDABCD于点E,且AEEBCEED,连结AODOBD

(1)求证:EB=ED

(2)若AO=6,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某区2018年初中毕业生毕业后的去向,某区教育部门对部分初三学生进行了抽样调查,就初三学生的四种去向(A,读普通高中;B,读职业高中;C,直接进入社会就业;D,其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:

(1)此次共调查了多少名初中毕业生?

(2)将两幅统计图中不完整的部分补充完整;

(3)若某区2018年初三毕业生共有3500人,请估计2019年初三毕业生中读普通高中的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)__________米.

查看答案和解析>>

同步练习册答案