精英家教网 > 初中数学 > 题目详情

【题目】某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8/千克,下面是他们在活动结束后的对话.

小丽:如果以10/千克的价格销售,那么每天可售出300千克.

小强:如果每千克的利润为3元,那么每天可售出250千克.

小红:如果以13/千克的价格销售,那么每天可获取利润750元.

【利润=(销售价-进价)销售量】

1)请根据他们的对话填写下表:

销售单价x(元/kg

10

11

13

销售量ykg




2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x0)的函数关系式;

3)设该超市销售这种水果每天获取的利润为W元,求Wx的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?

【答案】1300250150;(2y=﹣50x+800;(3W=﹣50x-122+80012元,800

【解析】试题分析:(1)根据题意得到每涨一元就少50千克,则以13/千克的价格销售,那么每天售出150千克;(2)根据题意可判断yx的一次函数.利用待定系数法求解析式,设y=kx+b,把x=10y=300x=11y=250代入即可得到y(千克)与x(元)(x0)的函数关系式;(2)根据每天获取的利润=每千克的利润×每天的销售量得到W=x-8y=x-8)(-50x+800),然后配成顶点式得y=-50x-122+800,最后根据二次函数的最值问题进行回答即可.

试题解析:(111/千克的价格销售,可售出250千克,

每涨一元就少50千克,

13/千克的价格销售,那么每天售出150千克.

故答案为300250150

2yx的一次函数.设y=kx+b

∵x=10y=300x=11y=250

,解得

∴y=-50x+800

经检验:x=13y=150也适合上述关系式,

∴y=-50x+800

W=x-8y=x-8)(-50x+800=-50x2+1200x-6400=-50x-122+800

∵a=-500

x=12时,W的最大值为800

即当销售单价为12元时,每天可获得的利润最大,最大利润是800元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,直线与反比例函数的图象交于AB两点,已知A点的纵坐标是2.

(1)求反比例函数的解析式.

(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点Py轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.

【答案】(1);(2)P(0,6)

【解析】试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.先求得平移后直线的解析式,再求得平移后直线与反比例函数的图象的交点坐标,最后求直线AC的解析式,即可求得点P的坐标.

试题解析:

令一次函数,则

解得:,即点A的坐标为(-4,2).

点A(-4,2)在反比例函数的图象上,

∴k=-4×2=-8,

∴反比例函数的表达式为

连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.

设平移后直线于x轴交于点F,则F(6,0)

设平移后的直线解析式为

将F(6,0)代入得:b=3

∴直线CF解析式:

3=,解得:

∴C(-2,4)

∵A、C两点坐标分别为A(-4,2)、C(-2,4)

∴直线AC的表达式为

此时,P点坐标为P(0,6).

点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.

型】解答
束】
26

【题目】以四边形ABCD的边ABAD为底边分别作等腰三角形ABFADE,连接EB.

(1)当四边形ABCD为正方形时(如图1),以边ABAD为斜边分别向外侧作等腰直角三角形ABFADE,连接EBFD,线段EBFD的数量关系是 .

(2)当四边形ABCD为矩形时(如图2),以边ABAD为斜边分别向内侧作等腰直角三角形ABFADE,连接EFBD,线段EFBD具有怎样的数量关系?请加以证明;

(3)当四边形ABCD为平行四边形时(如图3),以边ABAD为斜边分别向平行四边形内测、外侧作等腰直角三角形ABFADE,且EADFBA的顶角都为α,连接EFBD,交点为G,请用α表示出∠EGD,并说明理由.

1 2 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为菱形,∠D=60°AB=4E为边BC上的动点,连接AE,作AE的垂直平分线GF交直线CDF点,垂足为点G,则线段GF的最小值为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,BPAC是圆上的点,PB= PC PDCDCD交⊙OA,若AC=ADPD =sinPAD =PAB的面积为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】3张纸牌,分別是红桃3、红桃4和黑桃5(简称红3,红4,黑5).把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.

1)两次抽得纸牌均为红桃的概率;(请用画树状图列表等方法写出分析过程)

2)甲、乙两人做游戏,现有两种方案.A方案:若两次抽得花色相同则甲胜,否则乙胜.B方案:若两次抽得纸牌的数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方法感悟:

1)如图①,在矩形ABCD中,AB=4AD=6AE=4AF=2,是否在边BCCD上分别存在点GH,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.

问题解决:

2)如图②,有一矩形板材ABCDAB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°EF=FG=米,∠EHG=45°,经研究,只有当点EFG分别在边ADABBC上,且AFBF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积,并写出在以B为坐标原点,直线BCx轴,直线BAy轴的坐标系中,点H的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将置于平面直角坐标系中,.

1)画出向下平移5个单位得到的,并写出点的坐标;

2)画出绕点顺时针旋转得到的,并写出点的坐标;

3)画出以点为对称中心,与成中心对称的,并写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线ymx2+6mxnm0)与x轴交于AB两点(点A在点B左侧),顶点为C,抛物线与y轴交于点D,直线BCy轴于ESABC:SAEC = 23

1)求点A的坐标;

2)将ACO绕点C顺时针旋转一定角度后,点AB重合,此时点O恰好也在y轴上,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直线y=kx+bkb为常数分别与x轴、y轴交于点A﹣40)、B03),抛物线y=﹣x2+2x+1y轴交于点CE在抛物线y=﹣x2+2x+1的对称轴上移动F在直线AB上移动CE+EF的最小值是(   )

A. 1.4 B. 2.5 C. 2.8 D. 3

查看答案和解析>>

同步练习册答案