【题目】如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.
(1)求反比例函数的解析式.
(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.
【答案】(1);(2)P(0,6)
【解析】试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.先求得平移后直线的解析式,再求得平移后直线与反比例函数的图象的交点坐标,最后求直线AC的解析式,即可求得点P的坐标.
试题解析:
令一次函数中,则,
解得:,即点A的坐标为(-4,2).
∵点A(-4,2)在反比例函数的图象上,
∴k=-4×2=-8,
∴反比例函数的表达式为.
连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.
设平移后直线于x轴交于点F,则F(6,0)
设平移后的直线解析式为,
将F(6,0)代入得:b=3
∴直线CF解析式:
令3=,解得:,
∴C(-2,4)
∵A、C两点坐标分别为A(-4,2)、C(-2,4)
∴直线AC的表达式为,
此时,P点坐标为P(0,6).
点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.
【题型】解答题
【结束】
26
【题目】以四边形ABCD的边AB、AD为底边分别作等腰三角形ABF和ADE,连接EB.
(1)当四边形ABCD为正方形时(如图1),以边AB、AD为斜边分别向外侧作等腰直角三角形ABF和ADE,连接EB、FD,线段EB和FD的数量关系是 .
(2)当四边形ABCD为矩形时(如图2),以边AB、AD为斜边分别向内侧作等腰直角三角形ABF和ADE,连接EF、BD,线段EF和BD具有怎样的数量关系?请加以证明;
(3)当四边形ABCD为平行四边形时(如图3),以边AB、AD为斜边分别向平行四边形内测、外侧作等腰直角三角形ABF和ADE,且△EAD与△FBA的顶角都为α,连接EF、BD,交点为G,请用α表示出∠EGD,并说明理由.
图1 图2 图3
【答案】(1)EF=BD;(2)EF=BD;(3)
【解析】分析:(1)正方形的性质、等边三角形的性质和全等三角形的证明方法可证明△AFD≌△ABE,由全等三角形的性质即可得到EB=FD;(2)根据等腰直角三角形的性质可得,再证得∠BAD=∠FAE,即可判定△BAD∽△FAE ,根据相似三角形的性质可得,即可得;(3),先证△BFA∽△DEA,即可得,
再证得,所以△BAD∽△FAE,根据全等三角形的性质即可得,再由∠AHE=∠DHG,即可得.
详解:(1)EF=BD,
理由如下:
四边形ABCD为正方形,
∴AB=AD,
∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,
∴AF=AE,∠FAB=∠EAD=60°,
∵∠FAD=∠BAD+∠FAB=90°+60°=150°,
∠BAE=∠BAD+∠EAD=90°+60°=150°,
∴∠FAD=∠BAE,
在△AFD和△ABE中, ,
∴△AFD≌△ABE,
∴EB=FD;
(2)EF=BD.
证明:∵△AFB为等腰直角三角形
∴,∠FAB=45°
同理: ,∠EAD=45° ∴∠BAD+∠FAD=∠EAD+∠DAF
即∠BAD=∠FAE
∵, ∴
∴△BAD∽△FAE ∴
即:
(3)解:
∵△AFB为等腰直角三角形,∴FB=FA,
同理:ED=EA,∴,
又∵ ,∴△BFA∽△DEA,
∴,
∴,
∴,
∴△BAD∽△FAE,
∴,
又∵∠AHE=∠DHG,
∴.
科目:初中数学 来源: 题型:
【题目】如图所示,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和(1,0),且与y轴交于负半轴,给出六个结论:①a>0;②b>0;③c>0;④a+b+c=0;⑤b2﹣4ac>0;⑥2a﹣b>0,其中正确结论序号是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.
(1)求证:△ABE≌△BCF;
(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;
(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c
(1) 填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)
(2) 若|a|=2,且点B到点A、C的距离相等
① 当b2=16时,求c的值
② 求b、c之间的数量关系
③ P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x-c|-10|x+a|的值保持不变,求b的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知是 的直径,CD与 相切于C, .
(1)求证:BC 是的平分线.
(2)若DC=8, 的半径OA=6,求CE的长.
【答案】(1)证明见解析;(2)4.8
【解析】分析:(1)由,推出,由,推出,可得.(2)在中,求出OD,由,可得,由此即可解决问题.
详解:(1)证明:因为,
所以,
又因为,
所以,
故可得,
即可得是的平分线.
(2)因为DE是的切线,
所以,即在中,DC=8,OC=OA=6,所以,
又因为,
所以,
所以,
即可得EC=4.8
点睛:本题主要考查了切线的性质及相似三角形的应用,题目难度适中,会综合运用所考查的知识点是解题的关键.
【题型】解答题
【结束】
23
【题目】“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两份尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题.
(1)接受问卷调查的学生共有_____人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_____.
(2)请补全条形统计图.
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数.
(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某人去南方批发茶叶,在某地A批发市场以每包m元的价格进了40包茶叶,又到B批发市场时发现同样的茶叶比A批发市场要便宜,每包的价格仅为n元,因此他又在B批发市场进了60包同样的茶叶.如果他销售时以每包元的价格全部卖出这批茶叶,那么在不考虑其它因素的情况下他的这次买卖( )
A.一定盈利B.一定亏损
C.不盈不亏D.盈亏不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的顶点都在菱形的边上.设AE=AH=x(0<x<1),矩形的面积为S.
(1)求S关于x的函数解析式;
(2)当EFGH是正方形时,求S的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg) | 10 | 11 | 13 |
销售量y(kg) |
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com