分析 (1)作DG⊥AB于点G,作EH⊥AB于点H.则四边形DGHE是矩形,则在直角△ADG和直角△BEH中,利用x表示出AD和BE的长,即可求得数量关系;
(2)①连接DM,AM,然后证明△ADM∽△BEM,即可证得结论;②分(Ⅰ)当△DEF绕点M顺时针旋转α(0°≤α≤90°)角,根据△ADM∽△BEM,利用相似三角形的面积的比等于相似比的平方,以及面积的和差即可求得函数的解析式.
解答 解:(1)作DG⊥AB于点G,作EH⊥AB于点H.则四边形DGHE是矩形(如图1),![]()
设DG=HE=x,
在直角△ADG中,AD=$\frac{DG}{sin30°}$=2x,
在直角△BEH中,BE=$\frac{HE}{sin60°}$=$\frac{2x}{\sqrt{3}}$,
则$\frac{AD}{BE}$=$\sqrt{3}$.
(2)①存在,证明:连接DM,AM.
在等边三角形ABC中,M为BC的中点,
∴AM⊥BC,∠BAM=$\frac{1}{2}$∠BAC=30°,$\frac{AM}{BM}$=$\sqrt{3}$.
∴∠BME+∠EMA=90°.
同理,$\frac{DM}{EM}$=$\sqrt{3}$,∠AMD+∠EMA=90°.
∴$\frac{AM}{BM}$=$\frac{DM}{EM}$,∠AMD=∠BME.
∴△ADM∽△BEM.
∴$\frac{AD}{BE}$=$\frac{DM}{EM}$=$\sqrt{3}$.![]()
当△DEF绕点M顺时针旋转α(0°≤α≤90°)角时,(如图2),
∵△ADM∽△BEM,
∴$\frac{{S}_{△ADM}}{{S}_{△BEM}}$=($\frac{AD}{BE}$)2=3.
∴S△BEM=$\frac{1}{3}$S△ADM
∴S=S△ABM+S△ADM-S△BEM-S△DEM
=S△ABM+$\frac{2}{3}$S△ADM-S△DEM
=$\frac{1}{2}$×3×3$\sqrt{3}$+$\frac{2}{3}$×$\frac{1}{2}$×3$\sqrt{3}$(x-3)-$\frac{1}{2}$×1×$\sqrt{3}$
=$\sqrt{3}$x+$\sqrt{3}$.
∴s=$\sqrt{3}$x+$\sqrt{3}$ (3≤x≤3+$\sqrt{3}$).
点评 本题考查了相似三角形的判定与性质,矩形的性质,等边三角形的性质,正确作出辅助线,求得函数的解析式是关键.
科目:初中数学 来源: 题型:解答题
| 打折前一次性购物总金额 | 优惠措施 |
| 不超过300元 | 不优惠 |
| 超过300元且不超过400元 | 售价打九折 |
| 超过400元 | 售价打八折 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com