精英家教网 > 初中数学 > 题目详情

【题目】某地区住宅用电之电费计算规则如下:每月每户不超过50度时,每度以4元收费;超过50度的部分,每度以5元收费,并规定用电按整数度计算(小数部份无条件舍去) .
(1)下表给出了今年3月份A,B两用户的部分用电数据,请将表格数据补充完整,

电量(度)

电费(元)

A

240

B

合计

90


(2)若假定某月份C用户比D用户多缴电费38元,求C用户该月可能缴的电费为多少?

【答案】
(1)58;32;128;368
(2)

设3月份C用户用电x度,D用户用电y度.

∵38不能被4和5整除,∴x>50,y≤50

∴200+5(x-50)-4y=48

∴5x-4y=88 ∴y=1.25x-22

∵1.25x-2250 ∴50<x57.6

又∵x是4的倍数 ∴x=52,56 C用户可能缴的缴电费为210元或230元.


【解析】(1)A用户的用电量2004+(240-200)5=58度。B用户用电量为90-58=32度。B用户的电费为324=128元。合计电费为240+128=368元。
本题主要考查分段变量问题,注意未知数的取值范围。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为(1,2),点M的极坐标为 ,若直线l过点P,且倾斜角为 ,圆C以M为圆心,3为半径. (Ⅰ)求直线l的参数方程和圆C的极坐标方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA||PB|.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(
A.若a∈R,则“ <1”是“a>1”的必要不充分条件
B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件
C.若命题p:“?x∈R,sinx+cosx≤ ”,则¬p是真命题
D.命题“?x0∈R,使得x02+2x0+3<0”的否定是“?x∈R,x2+2x+3>0”

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,图中圆弧所在圆的圆心为点C,半径为 ,且点P在图中阴影部分(包括边界)运动.若 ,其中x,y∈R,则4x﹣y的最大值为(
A.
B.
C.2
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2﹣2ρcosθ﹣4=0
(1)若直线l与曲线C没有公共点,求m的取值范围;
(2)若m=0,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点E、F分别在BC、CD上,且BE=DF,若∠EAF=30°,则sin∠EDF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某生在旗杆EF与实验楼CD之间的A处,测得∠EAF=60°,然后向左移动12米到B处,测得∠EBF=30°,∠CBD=45°,sin∠CAD=
(1)求旗杆EF的高;
(2)求旗杆EF与实验楼CD之间的水平距离DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n为整数),则A′N=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.

(1)求公益广告牌的高度AB。
(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)

查看答案和解析>>

同步练习册答案