【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2﹣2ρcosθ﹣4=0
(1)若直线l与曲线C没有公共点,求m的取值范围;
(2)若m=0,求直线l被曲线C截得的弦长.
【答案】
(1)解:曲线C的极坐标方程对应的直角坐标方程为x2+y2﹣2x﹣4=0,即(x﹣1)2+y2=5
直线l的参数方程为 ,代入并整理可得t2+( m﹣1)t+m2﹣4=0
∵直线l与曲线C没有公共点,
∴△=( m﹣1)2﹣4(m2﹣4)<0,
∴m<﹣ ﹣2 或m>﹣ +2 ;
(2)解:若m=0,直线l的极坐标方程为θ= ,代入C的极坐标方程并整理可得ρ2﹣ρ﹣4=0.
直线l被曲线C截得的弦的端点的极径分别为ρ1,ρ2,则ρ1+ρ2=1,ρ1ρ2=﹣4,
∴直线l被曲线C截得的弦长=|ρ1﹣ρ2|= = .
【解析】(1)曲线C的极坐标方程化为直角坐标方程,直线l的参数方程为 ,代入并整理可得t2+( m﹣1)t+m2﹣4=0,利用直线l与曲线C没有公共点,即可求m的取值范围;(2)若m=0,若m=0,直线l的极坐标方程为θ= ,代入C的极坐标方程并整理可得ρ2﹣ρ﹣4=0,利用极径的意义求直线l被曲线C截得的弦长.
科目:初中数学 来源: 题型:
【题目】已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN= π,在△ABC中,角A、B、C所对的边分别是a、b、c.
(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;
(Ⅱ)若c= ,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:
月份x | 1 | 2 | 3 | 4 | 5 |
y(万盒) | 4 | 4 | 5 | 6 | 6 |
(1)该同学为了求出y关于x的线性回归方程 = + ,根据表中数据已经正确计算出 =0.6,试求出 的值,并估计该厂6月份生产的甲胶囊产量数;
(2)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知椭圆 为参数),A,B是C上的动点,且满足OA⊥OB(O为坐标原点),以原点O为极点,x轴的正半轴为极轴建立坐标系,点D的极坐标为 .
(1)求线段AD的中点M的轨迹E的普通方程;
(2)利用椭圆C的极坐标方程证明 为定值,并求△AOB的面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地区住宅用电之电费计算规则如下:每月每户不超过50度时,每度以4元收费;超过50度的部分,每度以5元收费,并规定用电按整数度计算(小数部份无条件舍去) .
(1)下表给出了今年3月份A,B两用户的部分用电数据,请将表格数据补充完整,
电量(度) | 电费(元) | |
A | 240 | |
B | ||
合计 | 90 |
(2)若假定某月份C用户比D用户多缴电费38元,求C用户该月可能缴的电费为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l:y=kx(k<0),将直线y=kx沿y轴向下平移m(m>0)个单位得到直线y=kx﹣m,平移后的直线与抛物线y=ax2相交于A(x1 , y1),B(x2 , y2)两点,抛物线y=ax2经过点P(6,﹣9).
(1)求a的值;
(2)如图1,当∠AOB<90°时,求m的取值范围;
(3)如图2,将抛物线y=ax2向右平移一个单位,再向上平移n个单位(n>0).若第一象限的抛物线上存在点M,N两点,且M,N两点关于直线y=x轴对称,求n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为
B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件
C.“同位角相等”这一事件是不可能事件
D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com