【题目】如图,在平面直角坐标系中,已知抛物线(a≠0)与x轴交于A(﹣1,0)、B(﹣3,0)两点,与y轴交于点C(0,﹣3),其顶点为点D,点E的坐标为(0,﹣),该抛物线与BE交于另一点F,连接BC.
(1)求该抛物线的解析式,并用配方法把解析式化为的形式;
(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?(3)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1);(2)当t= 或时,△OMB为等腰三角形;(3)存在点P,使∠PBF被BA平分,P(,).
【解析】
(1)根据待定系数法设抛物线解析式为,代入点C(0,﹣3),即可得出抛物线解析式;(2)抛物线解析式可得顶点D坐标为(-2,1),设M(-2,m),m>1,则MD=,若BM=OM,根据勾股定理得m2+4=m2+1,若BM=OB,则m2+1=9,
若OM=OB,则m2+4=9,根据MD=t×1,逐项计算即可得出t的值;(3)在y轴上取一点N(0,),连接BN交抛物线于点P则∠PBO=∠EBO,设直线BN的解析式为,,代入点N(0,),点B(﹣3,0),得直线BN的解析式为,与抛物线解析式联立,即可得出结论.
解:(1)由题意可设抛物线解析式为,
∵点C(0,﹣3)在抛物线上,
∴,
∴,
∴抛物线解析式为;
(2)由(1)有,
∴D点坐标为(-2,1),抛物线的对称轴为直线x=-2,
设M(-2,m),m>1,则MD=,
∴OM2=m2+4,BM2=m2+1,
若BM=OM,则m2+4=m2+1,此方程无解,
若BM=OB,则m2+1=9,
解得或(不合题意,舍去),
∴t=MD=,
若OM=OB,则m2+4=9,
解得或(不合题意,舍去),
∴t=MD=,
综上所述,当t=或时,△OMB为等腰三角形;
(3)存在点P,使∠PBF被BA平分,
在y轴上取一点N(0,),连接BN交抛物线于点P则∠PBO=∠EBO,
设直线BN的解析式为,,
∴,解得,
∴直线BN的解析式为,
解方程组,得或(不合题意,舍去),
∴P(,).
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E.点C是弧BF的中点.
(1)求证:AD⊥CD;
(2)若∠CAD=30°.⊙O的半径为3,一只蚂蚁从点B出发,沿着BE--EC--弧CB爬回至点B,求蚂蚁爬过的路程(π≈3.14,≈1.73,结果保留一位小数.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G.
(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线过点且与轴交于点,点关于轴的对称点为点.过点且与直线平行的直线交于点,交轴于点,连接.
(1)求直线的解析式;
(2)求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;(不需要写定义域)
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线的解析式为,它与坐标轴分别交于A,B两点.
(1)求出点A的坐标;
(2)动点C从y轴上的点出发,以每秒1个单位长度的速度向y轴负半轴运动,求出点C运动的时间t,使得为等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:
售价 | 3元 | 4元 | 5元 | 6元 |
数目 | 14本 | 11本 | 10本 | 15本 |
下列说法正确的是( )
A. 该班级所售图书的总收入是226元
B. 在该班级所售图书价格组成的一组数据中,中位数是4
C. 在该班级所售图书价格组成的一纽数据中,众数是15
D. 在该班级所售图书价格组成的一组数据中,方差是2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,AF、AG与边BC的交点分别为D、E (点D不与点B重合,点E不与点C重合).
(1)图中共有 对相似而不全等的三角形.
(2)选取其中一对进行证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com