精英家教网 > 初中数学 > 题目详情

【题目】一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.

(1)求y关于x的函数关系式;(不需要写定义域)

(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?

【答案】(1)该一次函数解析式为y=﹣x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.

【解析】

1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;

(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.

(1)设该一次函数解析式为y=kx+b,

将(150,45)、(0,60)代入y=kx+b中,得

,解得:

∴该一次函数解析式为y=﹣x+60;

(2)当y=﹣x+60=8时,

解得x=520,

即行驶520千米时,油箱中的剩余油量为8升.

530﹣520=10千米,

油箱中的剩余油量为8升时,距离加油站10千米

∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作 于点C,若OA=2,则阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH= ,点B的坐标为(m,﹣2).

(1)求△AHO的周长;
(2)求该反比例函数和一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠ADC=∠EFC,∠3=∠C,证明∠1=∠2的过程如下,请填上对应的理由.

解:∵∠ADC=∠EFC(已知),

ADEF___________________________________).

∴∠1=∠4__________________________________).

又∵∠3=∠C(已知),

ACDG__________________________________).

∴∠2=∠4_________________________________).

∴∠1=∠2________________________).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平面直角坐标系中,两点的坐标分别为分别是轴、轴上的点.如果以点为顶点的四边形是平行四边形,则的坐标为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在ABC中,∠A52°,若∠ABC与∠ACB的角平分线交于点D1,得到∠D1,∠ABD1与∠ACD1的角平分线交于点D2,得到∠D2;依此类推,∠ABD4与∠ACD4的角平分线交于点D5,得到∠D5,则∠D5的度数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,AOBCOD是有公共顶点的两个等腰直角三角形,∠AOB=∠COD90°,连接ACBD

1)如果AOBCOD的位置如图1所示,点DAO上,请判断ACBD的数量关系,并说明理由;

2)如果AOBCOD的位置如图2所示,请判断ACBD的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨l元,则每个月少卖l0件(每件售价不能高于65元).设每件商品的售价上x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量戈的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知等边三角形ABC和等边三角形DBC有公共边BC,以图中某个点为旋转中心,旋转DBC使它和ABC重合,则旋转中心可以是________(写出一个旋转中心即可)

查看答案和解析>>

同步练习册答案