精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC是等边三角形,DBC边上一个动点(DBC均不重合),AD=AE,∠DAE=60°,连接CE

1)求证:ABD≌△ACE

2)求证:CE平分∠ACF

3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.

【答案】(1)详见解析;(2)详见解析;(3)1.

【解析】

(1)由于AB=AC,AD=AE,所以只需证∠BAD=CAE即可得结论;

(2)证明∠ACE和∠ECF都等于60°即可;

(3)将四边形ADCE的周长用AD表示,AD最小时就是四边形ADCE的周长最小,根据垂线段最短原理,当ADBC时,AD最小,此时BD就是BC的一半.

(1)证明:∵△ABC是等边三角形,

AB=AC,BAC=60°,

∵∠DAE=60°,

∴∠BAD+DAC=CAE+DAC,

即∠BAD=CAE,

ABDACE中,

∴△ABD≌△ACE.

(2)证明:∵△ABC是等边三角形,

∴∠B=BCA=60°,

∵△ABD≌△ACE,

∴∠ACE=B=60°,

∵△ABD≌△ACE,

∴∠ACE=B=60°,

∴∠ECF=180﹣ACE﹣BCA=60°,

∴∠ACE=ECF,

CE平分∠ACF.

(3)解:∵△ABD≌△ACE,

CE=BD,

∵△ABC是等边三角形,

AB=BC=AC=2,

∴四边形ADCE的周长=CE+DC+AD+AE=BD+DC+2AD=2+2AD,

根据垂线段最短,当ADBC时,AD值最小,四边形ADCE的周长取最小值,

AB=AC,

BD=BC=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3 ,MN=2

(1)求∠COB的度数;
(2)求⊙O的半径R;
(3)点F在⊙O上( 是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABD△BCD都是等边三角形纸片,AB=2,将△ABD纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD

(1)求证:△FBE是直角三角形;

(2)求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=4,AC=6,ABC和ACB的平分线交于点E,过点E作MNBC分别交AB、AC于M、N,则AMN的周长为(  )

A. 10 B. 6 C. 4 D. 不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.
(1)求摸出1个球是白球的概率;
(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);
(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为 .求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.

1)若0x≤6,请写出yx的函数关系式.

2)若x6,请写出yx的函数关系式.

3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上表示的数满足且多项式是五次四项式

1的值为____ ____的值为___ ____的值为____ ____

2已知点、点是数轴上的两个动点,点从点出发,以个单位/秒的速度向右运动,同时点从点出发,以个单位/秒的速度向左运动:

若点和点经过秒后在数轴上的点处相遇,求出的值和点所表示的数;

若点运动到点处,动点再出发,则运动几秒后这两点之间的距离为5个单位?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,AD和AE分别是△ABC的BC边上的高和中线,点D是垂足,点E是BC的中点,规定:λA= .特别地,当点D、E重合时,规定:λA=0.另外,对λB、λC作类似的规定.

(1)如图2,在△ABC中,∠C=90°,∠A=30°,求λA、λC
(2)在每个小正方形边长均为1的4×4的方格纸上,画一个△ABC,使其顶点在格点(格点即每个小正方形的顶点)上,且λA=2,面积也为2;
(3)判断下列三个命题的真假(真命题打“√”,假命题打“×”):
①若△ABC中λA<1,则△ABC为锐角三角形;
②若△ABC中λA=1,则△ABC为直角三角形;
③若△ABC中λA>1,则△ABC为钝角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:

(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少?

(2)圣诞老人在超市逗留了多长时间?

(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?

查看答案和解析>>

同步练习册答案