【题目】如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.
(1)求证:△ABD≌△ACE;
(2)求证:CE平分∠ACF;
(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.
【答案】(1)详见解析;(2)详见解析;(3)1.
【解析】
(1)由于AB=AC,AD=AE,所以只需证∠BAD=∠CAE即可得结论;
(2)证明∠ACE和∠ECF都等于60°即可;
(3)将四边形ADCE的周长用AD表示,AD最小时就是四边形ADCE的周长最小,根据垂线段最短原理,当AD⊥BC时,AD最小,此时BD就是BC的一半.
(1)证明:∵△ABC是等边三角形,
∴AB=AC,∠BAC=60°,
∵∠DAE=60°,
∴∠BAD+∠DAC=∠CAE+∠DAC,
即∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE.
(2)证明:∵△ABC是等边三角形,
∴∠B=∠BCA=60°,
∵△ABD≌△ACE,
∴∠ACE=∠B=60°,
∵△ABD≌△ACE,
∴∠ACE=∠B=60°,
∴∠ECF=180﹣∠ACE﹣∠BCA=60°,
∴∠ACE=∠ECF,
∴CE平分∠ACF.
(3)解:∵△ABD≌△ACE,
∴CE=BD,
∵△ABC是等边三角形,
∴AB=BC=AC=2,
∴四边形ADCE的周长=CE+DC+AD+AE=BD+DC+2AD=2+2AD,
根据垂线段最短,当AD⊥BC时,AD值最小,四边形ADCE的周长取最小值,
∵AB=AC,
∴BD=BC=.
科目:初中数学 来源: 题型:
【题目】如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3 ,MN=2 .
(1)求∠COB的度数;
(2)求⊙O的半径R;
(3)点F在⊙O上( 是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABD和△BCD都是等边三角形纸片,AB=2,将△ABD纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.
(1)求证:△FBE是直角三角形;
(2)求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为( )
A. 10 B. 6 C. 4 D. 不确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.
(1)求摸出1个球是白球的概率;
(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);
(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为 .求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.
(1)若0<x≤6,请写出y与x的函数关系式.
(2)若x>6,请写出y与x的函数关系式.
(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点在数轴上表示的数满足,且多项式是五次四项式.
(1)的值为____ ____,的值为___ ____,的值为____ ____;
(2)已知点、点是数轴上的两个动点,点从点出发,以个单位/秒的速度向右运动,同时点从点出发,以个单位/秒的速度向左运动:
① 若点和点经过秒后在数轴上的点处相遇,求出的值和点所表示的数;
② 若点运动到点处,动点再出发,则运动几秒后这两点之间的距离为5个单位?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AD和AE分别是△ABC的BC边上的高和中线,点D是垂足,点E是BC的中点,规定:λA= .特别地,当点D、E重合时,规定:λA=0.另外,对λB、λC作类似的规定.
(1)如图2,在△ABC中,∠C=90°,∠A=30°,求λA、λC;
(2)在每个小正方形边长均为1的4×4的方格纸上,画一个△ABC,使其顶点在格点(格点即每个小正方形的顶点)上,且λA=2,面积也为2;
(3)判断下列三个命题的真假(真命题打“√”,假命题打“×”):
①若△ABC中λA<1,则△ABC为锐角三角形;
②若△ABC中λA=1,则△ABC为直角三角形;
③若△ABC中λA>1,则△ABC为钝角三角形. .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:
(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少?
(2)圣诞老人在超市逗留了多长时间?
(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com