精英家教网 > 初中数学 > 题目详情
8.如图,已知三条直线a、b、c,a∥b,c与a、b交于A、C,点B在b上,∠1=65°,AB=BC,则∠2的度数是(  )
A.40°B.45°C.50°D.55°

分析 先根据平行线的性质求出∠ACB,再根据等腰三角形的性质,求出∠BAC,利用三角形内角和定理即可解决问题.

解答 解:如图,∵a∥b,∠1=65°
∴∠1=∠ACB=65°,
∵BA=BC,
∴∠ACB=∠BAC=65°,
∴∠2=180°-∠ACB-∠BAC=180°-65°-65°=50°,
故选C.

点评 本题考查平行线的性质、等腰三角形的性质、三角形内角和定理等知识,灵活运用这些知识是解题的关键,属于基础题,中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.已知关于x的不等式x-m>9-3m的解集为x>1.则m的值为4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,正方形ABCD的边长为4,延长CB至点M,使BM=2,过点B作BN⊥AM,垂足为N,O是对角线AC,BD的交点,连接ON,则ON的长为$\frac{6\sqrt{10}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,则$\widehat{EG}$的长为$\frac{\sqrt{3}π}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.以点A、B、C为圆心的圆分别记作⊙A、⊙B、⊙C,其中⊙A的半径长为1,⊙B的半径长为2,⊙C的半径长为3,如果这三个圆两两外切,那么cosB的值是$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,已知菱形ABCD,AC=8,BD=6,将此菱形绕点A逆时针旋转180°,则该菱形扫过的面积为32π+24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某小学三年级到六年级的全体学生参加“礼仪”知识测试,试题共有10题,每题10分.从中随机抽取了部分学生的成绩进行统计,发现抽测的学生每人至少答对了6题,现将有关数据整理后绘制成如下“年级人数统计图”和尚未全部完成的“成绩情况统计表”.
                   成绩情况统计表
成绩100分90分80分70分60分
人数214036185
频率0.1750.3330.30.150.04
根据图表中提供的信息,回答下列问题:
(1)测试学生中,成绩为80分的学生人数有36名;众数是90分;中位数是90分;
(2)若该小学三年级到六年级共有1800名学生,则可估计出成绩为70分的学生人数约有270名.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:FC=FB;
(2)求证:CG是⊙O的切线;
(3)若FB=FE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下列运算中,正确的是(  )
A.a2•a4=a8B.(a23=a6C.a+a3=a4D.(a+b)(a-b)=a2+b2

查看答案和解析>>

同步练习册答案