精英家教网 > 初中数学 > 题目详情
17.如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:FC=FB;
(2)求证:CG是⊙O的切线;
(3)若FB=FE=2,求⊙O的半径.

分析 (1)连接OC,BC,证△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF即可.
(2)只要证明∠FCB=∠CAB即可推出CG是⊙O切线.
(2)由EF=FC,推出∠G=∠FAG,推出AF=FG,求出AB=BG,由切割线定理得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2-BF2,推出FG2-4FG-12=0,求出FG即可,再在RT△ABF中利用勾股定理即可解决问题.

解答 (1)证明:连接OC,BC,
∵CH∥BD,
∴△AEC∽△AFD,△AHE∽△ABF,
∴$\frac{CE}{DF}$=$\frac{AE}{AF}$,$\frac{AE}{AF}$=$\frac{EH}{FB}$,
∴$\frac{CE}{DF}$=$\frac{EH}{FB}$,
∵CE=EH(E为CH中点),
∴BF=DF,
∵AB为⊙O的直径,
∴∠ACB=∠DCB=90°,
∵BF=DF,
∴CF=DF=BF(直角三角形斜边上的中线等于斜边的一半),
即CF=BF.
(2)证明∵BF切⊙O于B,
∴∠FBC=∠CAB,
∵OC=OA,CF=BF,
∴∠FCB=∠FBC,∠OCA=∠OAC,
∴∠FCB=∠CAB,
∵∠ACB=90°,
∴∠ACO+∠BCO=90°,
∴∠FCB+∠BCO=90°,
即OC⊥CG,
∴CG是⊙O切线,
(3)解::∵BF=CF=DF(已证),EF=BF=2,
∴EF=FC,
∴∠FCE=∠FEC,
∵∠AHE=∠CHG=90°,
∴∠FAH+∠AEH=90°,∠G+∠GCH=90°,
∵∠AEH=∠CEF,
∴∠G=∠FAG,
∴AF=FG,
∵FB⊥AG,
∴AB=BG,
∵GBA是⊙O割线,AB=BG,FB=FE=2,
∴由切割线定理得:(2+FG)2=BG×AG=2BG2
在Rt△BFG中,由勾股定理得:BG2=FG2-BF2
∴FG2-4FG-12=0,
解得:FG=6,FG=-2(舍去),
由勾股定理得:
AB=BG=$\sqrt{{6}^{2}-{2}^{2}}$=4$\sqrt{2}$,
∴⊙O的半径是2$\sqrt{2}$.

点评 本题考查了切线的性质和判定,相似三角形的性质和判定,等腰三角形的性质和判定,直角三角形斜边上中线的性质,圆周角定理,勾股定理等知识点的综合运用,题目综合性比较强,有一定的难度

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知线段DE别交△ABC的边AB、AC于D、E,且$\frac{AB}{AD}$=$\frac{AC}{AE}$=$\frac{BC}{DE}$=$\frac{5}{3}$,△ABC的周长是100cm,面积是75cm2,求△ADE的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,已知三条直线a、b、c,a∥b,c与a、b交于A、C,点B在b上,∠1=65°,AB=BC,则∠2的度数是(  )
A.40°B.45°C.50°D.55°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,将长为4cm,宽为2cm的矩形纸片ABCD沿着EF翻叠,使点A与C重合,则折痕EF的长为$\sqrt{5}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,△A1OB1是边长为1的等边三角形,将其以原点O为中心在原点两侧进行位似变换,得△A2OB2,二者的位似比为1:2,将△A2OB2以x轴为对称轴进行轴对称变换,得△A3OB2再原点O为中心在原点两侧进行位似变换,得△A4OB3,二者的位似比为1:2,按此规律.则点A2016的坐标为($\frac{1}{2}$×4504,$\frac{\sqrt{3}}{2}$×4504).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.将一张矩形纸片对折,用笔尖在上面扎个“R”,再铺平,可以看到(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知a(a-2)-(a2-2b)=-4.求$\frac{{a}^{2}+{b}^{2}}{-2-ab}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平行四边形ABCD中,过点A作AE⊥BE,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6$\sqrt{3}$,AF=4$\sqrt{3}$,求tan∠DEC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知直线y=2x+3与抛物线y=2x2-3x+1交于A(x1,y1),B(x2,y2)两点,则$\frac{1}{{x}_{1}+1}+\frac{1}{{x}_{2}+1}$=$\frac{9}{5}$.

查看答案和解析>>

同步练习册答案