精英家教网 > 初中数学 > 题目详情

【题目】如图,面积为1的正方形ABCD中,MN分别为ADBC的中点,将C点折至MN上,落在P点的位置,折痕为BQ,连接PQ.以PQ为边长的正方形的面积等于______

【答案】

【解析】

根据折叠的性质,可得PQ=QC,∠PBQ=QBC=30°;再在RtBCQ中,根据三角函数的定义可求得PQ的值,进而可得答案.

解:由折法知,点P是点C关于折痕BQ的对称点

BQ垂直平分PCBC=BP

MN分别为ADBC边上的中点,且ABCD是正方形

BP=PC

BC=BP=PC

∴△PBC是等边三角形

∴∠PBQ=QBC==PBC=×60°=30°

由折法知PQ=QC

RtBCQ中,

∴以PQ为边的正方形的面积为

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某工厂有甲种原料,乙种原料,现用两种原料生产处两种产品共件,已知生产每件产品需甲种原料,乙种原料,且每件产品可获得元;生产每件产品甲种原料,乙种原料,且每件产品可获利润元,设生产产品 件(产品件数为整数件),根据以上信息解答下列问题:

(1)生产两种产品的方案有哪几种?

(2)设生产这件产品可获利元,写出关于的函数解析式,写出(1)中利润最大的方案,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:

请根据图中提供的信息,解答下列问题:

(1)求被调查的学生总人数;

(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;

(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁,

I)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A'C'的位置时,A'C'的长为 .

II)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°。已知PQMQMN=40m,求解放桥的全长PQtan54°≈1.4tan73°≈3.3,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】雾霾天气给人们的生活带来很大影响,空气质量问题备受人们关注,为了减少雾霾影响,某单位计划为职工购买两种型号的防霾口罩.已知每个种型号防霾口罩价格比每个种型号防霾口罩价格多元,花元购买种型号防霾口罩和花元购买种型号防霾口罩的数量相同.

1)求两种型号防霾口罩每个价格各多少元?

2)根据单位实际情况,需购买两种型号防霾口罩共个,总费用不高于万元,求种型号防霾口罩至少要购买多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.

1)根据题意,填写下表:

重量(千克)

费用(元)

0.5

1

3

4

甲公司

_________

22

_________

67

乙公司

11

________

51

_________

2)请分别写出甲乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;

3)小明应选择哪家快递公司更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数与反比例函数的图象交于A14),B4n)两点.

1)求反比例函数和一次函数的解析式;

2)直接写出当x0时,的解集.

3)点Px轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年422日是第50个世界地球日,某校在八年级5个班中,每班各选拔10名学生参加“环保知识竞赛”并评出了一、二、三等奖各若干名,学校将获奖情况绘成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:

1)求本次竞赛获奖的总人数,并补全条形统计图;

2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;

3)已知甲、乙、丙、丁4位同学获得一等奖,学校将采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”知识竞赛,请求出抽到的2人恰好是甲和乙的概率(用画树状图或列表等方法求解).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,∠B=90°,点DE分别是边BCAC的中点,连接绕点C按顺时针方向旋转,记旋转角为

问题发现:

时,_____时,_____

拓展探究:

试判断:当时,的大小有无变化?请仅就图2的情况给出证明.

问题解决:

旋转至ADE三点共线时,直接写出线段BD的长.

查看答案和解析>>

同步练习册答案