【题目】如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周长.
【答案】
(1)证明:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
∵AB=AC,
∴∠B=∠C(等边对等角).
∵D是BC的中点,
∴BD=CD.
在△BED和△CFD中,
,
∴△BED≌△CFD(AAS).
∴DE=DF
(2)解:∵AB=AC,∠A=60°,
∴△ABC为等边三角形.
∴∠B=60°,
∵∠BED=90°,
∴∠BDE=30°,
∴BE= BD,
∵BE=1,
∴BD=2,
∴BC=2BD=4,
∴△ABC的周长为12
【解析】(1)根据DE⊥AB,DF⊥AC,AB=AC,求证∠B=∠C.再利用D是BC的中点,求证△BED≌△CFD即可得出结论.(2)根据AB=AC,∠A=60°,得出△ABC为等边三角形.然后求出∠BDE=30°,再根据题目中给出的已知条件即可算出△ABC的周长.
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=+.(其中的“+”是四则运算中的加法)
(1)求点A(﹣1,3),B(,)的勾股值「A」、「B」;
(2)点M在反比例函数的图象上,且「M」=4,求点M的坐标;
(3)求满足条件「N」=3的所有点N围成的图形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OB是∠AOC的平分线,OD是∠EOC的平分线.
(1)如果∠AOD=75°,∠BOC=19°,求∠DOE的度数。
(2)如果∠BOD=56°,求∠AOE的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年我市参加中考的人数大约有41300人,将41300用科学记数法表示为( )
A.413×102
B.41.3×103
C.4.13×104
D.0.413×103
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题
如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:ADBC=APBP.
(2)探究
如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用
请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com