精英家教网 > 初中数学 > 题目详情
4.如图,反比例函数y=$\frac{k}{x}$(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3BD.
(1)求k的值;
(2)求点C的坐标;
(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.

分析 (1)根据A坐标,以及AB=3BD求出D坐标,代入反比例解析式求出k的值;
(2)直线y=3x与反比例解析式联立方程组即可求出点C坐标;
(3)作C关于y轴的对称点C′,连接C′D交y轴于M,则d=MC+MD最小,得到C′(-$\frac{\sqrt{3}}{3}$,$\sqrt{3}$),求得直线C′D的解析式为y=-$\sqrt{3}$x+1+$\sqrt{3}$,直线与y轴的交点即为所求.

解答 解:(1)∵A(1,3),
∴AB=3,OB=1,
∵AB=3BD,
∴BD=1,
∴D(1,1)
将D坐标代入反比例解析式得:k=1;

(2)由(1)知,k=1,
∴反比例函数的解析式为;y=$\frac{1}{x}$,
解:$\left\{\begin{array}{l}{y=3x}\\{y=\frac{1}{x}}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{3}}\\{y=\sqrt{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{\sqrt{3}}{3}}\\{y=-\sqrt{3}}\end{array}\right.$,
∵x>0,
∴C($\frac{\sqrt{3}}{3}$,$\sqrt{3}$);

(3)如图,作C关于y轴的对称点C′,连接C′D交y轴于M,则d=MC+MD最小,
∴C′(-$\frac{\sqrt{3}}{3}$,$\sqrt{3}$),
设直线C′D的解析式为:y=kx+b,
∴$\left\{\begin{array}{l}{\sqrt{3}=-\frac{\sqrt{3}}{3}k+b}\\{1=k+b}\end{array}\right.$,∴$\left\{\begin{array}{l}{k=3-2\sqrt{3}}\\{b=-2+2\sqrt{3}}\end{array}\right.$,
∴y=(3-2$\sqrt{3}$)x+2$\sqrt{3}$-2,
当x=0时,y=2$\sqrt{3}$-2,
∴M(0,2$\sqrt{3}$-2).

点评 此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,以及直线与反比例的交点求法,熟练掌握待定系数法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.化简:$3(2\overrightarrow a-4\overrightarrow b)-5(\overrightarrow a+\overrightarrow b)$=$\overrightarrow{a}$-17$\overrightarrow{b}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.若关于x的二次函数y=ax2+bx+c(a>0,c>0,a,b,c是常数)与x轴交于两个不同的点A(x1,0),B(x2,0)(0<x1<x2),与y轴交于点P,其图象顶点为点M,点O为坐标原点.
(1)当x1=c=2,a=$\frac{1}{3}$时,求x2与b的值;
(2)当x1=2c时,试问△ABM能否为等边三角形?判断并证明你的结论;
(3)当x1=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知反比例函数y=$\frac{m-5}{x}$(m为常数,且m≠5).
(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;
(2)若其图象与一次函数y=-x+1图象的一个交点的纵坐标是3,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:(-$\frac{4}{3}$)2+$\sqrt{8}$-2sin45°-|1-$\sqrt{2}$|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,点A(8,1)、B(n,8)都在反比例函数y=$\frac{m}{x}$(x>0)的图象上,过点A作AC⊥x轴于C,过点B作BD⊥y轴于D.
(1)求m的值和直线AB的函数关系式;
(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD-DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D时,点Q也停止运动,设运动的时间为t秒.
①设△OPQ的面积为S,写出S与t的函数关系式;
②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O′PQ,是否存在某时刻t,使得点O′恰好落在反比例函数的图象上?若存在,求O′的坐标和t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.为绿化校园,某校计划购进A、B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.
(1)y与x的函数关系式为:y=-20x+1890;
(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC和Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm
(1)填空:AD=2$\sqrt{6}$(cm),DC=2$\sqrt{2}$(cm)
(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B方向运动,当N点运动到B点时,M、N两点同时停止运动,连接MN,求当M、N点运动了x秒时,点N到AD的距离(用含x的式子表示)
(3)在(2)的条件下,取DC中点P,连接MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出y的最大值.
(参考数据sin75°=$\frac{\sqrt{6}+\sqrt{2}}{4}$,sin15°=$\frac{\sqrt{6}-\sqrt{2}}{4}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切于点D,则该圆的圆心是(  )
A.线段AE的中垂线与线段AC的中垂线的交点
B.线段AB的中垂线与线段AC的中垂线的交点
C.线段AE的中垂线与线段BC的中垂线的交点
D.线段AB的中垂线与线段BC的中垂线的交点

查看答案和解析>>

同步练习册答案