【题目】如图,在平面直角坐标系中,直线y=﹣x+3与y轴交于点A,与x轴交于点B,抛物线y=﹣x2+bx+c经过点A和点B,过点A作AC⊥AB交抛物线于点C,过点C作CD⊥y轴于点D,点E在线段AC上,连接ED,且ED=EC,连接EB交y轴于点F.
(1)求抛物线的表达式;
(2)求点C的坐标;
(3)若点G在直线AB上,连接FG,当∠AGF=∠AFB时,直接写出线段AG的长;
(4)在(3)的条件下,点H在线段ED上,点P在平面内,当△PAG≌△PDH时,直接写出点P的坐标.
【答案】(1)y=﹣x2+x+3;(2)C(﹣6,﹣5);(3);(4)P(,﹣1)
【解析】
(1)先求出点A,B坐标,再代入抛物线解析式中,即可得出结论;
(2)先判断出△AOB∽△MOA,得出,求出,进而得出直线AM的解析式为,直线AM和抛物线解析式联立求解即可得出结论;
(3)先判断出∠EAF=∠BFG,进而判断出△AFE∽△FGB,得出,再求出EF=,BF=,即可得出结论;
(4)先判断出∠PAG=∠PDH,PA=PD,进而判断出点P在AD的垂直平分线上,设P(m,﹣1),再判断出△APB≌△DPE(SAS),得出PE=BP,利用PE=PB建立方程求解即可得出结论.
解:针对于直线y=﹣x+3,
令x=0,则y=3,
∴A(0,3),
令y=0,
则0=﹣x+3,
∴x=4,
∴B(4,0),
将点A(0,3),B(4,0)代入抛物线y=﹣x2+bx+c中,得,
∴,
∴抛物线的解析式为y=﹣x2+x+3;
(2)如图1,设AC与x轴的交点为M,
∵AC⊥AB,
∴∠OAM+∠OAB=90°,
∵∠OBA+∠OAB=90°,
∴∠OAM=∠OBA,
∵∠AOB=∠MOA=90°,
∴△AOB∽△MOA,
∴,
∴MO==,
∴M(﹣,0),
∵A(0,3),
∴直线AM的解析式为y=x+3①,
由(1)知,抛物线的解析式为y=﹣x2+x+3②,
联立①②解得,或,
∴C(﹣6,﹣5);
(3)如图2,
∵CD⊥y轴,EC=ED,
∴点E是CD的垂直平分线上,
∴点E在AC上,
∴E(﹣3,﹣1),
由(1)知,A(0,3),B(4,0),
∴AB=5,AE=5,
∴AB=AE,
∴∠AEO=∠ABO=45°,
∴∠AFB=∠AEO+∠OAE=45°+∠OAE,∠AGF=∠ABO+∠BFG=45°+∠BFG,
∵∠AGF=∠AFB,
∴∠EAF=∠BFG,
∵∠AEF=∠FBG=45°,
∴△AFE∽△FGB,
∴,
∴BG=,
∵B(4,0),E(﹣3,﹣1),
∴直线BE的解析式为y=x﹣,
∴F(0,﹣),
∴EF==,BF=,
∴BG==,
∴AG=AB﹣BG=;
(4)如图3,
∵△PAG≌△PDH,
∴∠PAG=∠PDH,PA=PD,
∵PA=PD,
∴点P在AD的垂直平分线上,
∵A(0,3),
∴设P(m,﹣1),
连接BP,PE,
∴PE=m+3,BP=,
∵D(0,﹣5),E(﹣3,﹣1),
∴DE=5=AB,
在△APB和△DPE中,,
∴△APB≌△DPE(SAS),
∴PE=BP,
∴m+3=,
∴m=,
∴P(,﹣1).
科目:初中数学 来源: 题型:
【题目】“五一”期间甲乙两商场搞促销活动,甲商场的方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”“20元”“30元”“50元”,顾客每消费满300元就可从箱子里不放回地摸出2个球,根据两个小球所标金额之和可获相应价格的礼品;乙商场的方案是:在一个不透明的箱子里放2个完全相同的小球,球上分别标“5元”“30元”,顾客每消费满100元,就可从箱子里有放回地摸出1个球,根据小球所标金额可获相应价格的礼品.某顾客准备消费300元.
(1)请用画树状图或列表法,求出该顾客在甲商场获得礼品的总价值不低于50元的概率;
(2)判断该顾客去哪个商场消费使获得礼品的总价值不低于50元机会更大?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“十一”期间,老张在某商场购物后,参加了出口处的抽奖活动.抽奖规则如下:每张发票可摸球一次,每次从装有大小形状都相同的1个白球和2个红球的盒子中,随机摸出一个球,若摸出的是白球,则获得一份奖品;若摸出的是红球,则不获奖.
(1)求每次摸球中奖的概率;
(2)老张想“我手中有两张发票,那么中奖的概率就翻了一倍.”你认为老张的想法正确吗?用列表法或画树形图分析说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半轻的⊙O与AC相切于点D,BD平分∠ABC,∠ABC=60°.
(1)求∠C的度数;
(2)若圆的半径OB=2,求线段CD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D是BA延长线上一点,E是AC的中点.
(1)利用尺规作出∠DAC的平分线AM,连接BE并延长交AM于点F,(要求在图中标明相应字母,保留作图痕迹,不写作法);
(2)试判断AF与BC有怎样的位置关系与数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=100°,在同一平面内,将△ABC绕点A顺时针旋转到△AB1C1的位置,连接BB1,若BB1∥AC1,则∠CAC1的度数是( )
A.10°B.20°C.30°D.40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的顶点坐标分别为A(0,1),B(3,3) ,C(1,3) .
(1)画出△ABC关于点O的中心对称图形△A1B1C1;
(2)画出△ABC绕点A逆时针旋转90的△AB2C2;直接写出点C2的坐标为 ;
(3)求在△ABC旋转到△AB2C2的过程中,点C所经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为3的等边△ABC中,点D在AC上,且CD=1,点E在AB上(不与点A、B重合),连接DE,把△ADE沿DE折叠,当点A的对应点F落在等边△ABC的边上时,AE的长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com