精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中,AB=AC,D是BC的中点,AE平分∠DAC交DC于E,点O是AC一点,⊙O过A、E两点,交AD于G,交AC于F,连接EF.
(1)求证:CD与⊙O相切.
(2)连接FG交AE于H,若EH=2,HA=数学公式,求EF长.

解:(1)∵AB=AC,D是BC的中点,
∴AD⊥BC,
∴∠ADC=90°,
∵AE平分∠DAC,
∴∠DAE=∠OAE,
又∵OA=OE,
∴∠OAE=∠OEA,
∴∠DAE=∠OEA,
∴AD∥OE,
∴∠ADE=∠OEC=90°,
∴OE⊥CD,
∴CD与⊙O相切;

(2)∵AF为圆O的直径,
∴∠AGF=90°,又∠ADE=90°,
∴∠ADE=∠AGF,
∴GF∥DC,
∴∠HFE=∠FEC,
又∵∠FEC=∠EAF,
∴∠HFE=∠EAF,
又∵∠HEF=∠FEA,
∴△HEF∽△FEA,
=
又∵HE=2,AE=AH+HE=2+=
∴EF2=2×=9,
∴EF=3.
分析:(1)由三角形ABC为等腰三角形,D为底边的中点,根据三线合一得到AD与BC垂直,由AE为角平分线得到一对角相等,再根据半径OA=OE,根据等边对等角得到一对角相等,等量代换可得一对内错角相等,根据内错角相等可得AD与OE平行,进而得到OE与DC垂直,可得CD为圆O的切线;
(2)由AF为圆的直径,根据直角所对的圆周角为直角可得∠AGF为直角,又∠ADC也为直角,根据同位角相等可得GF与DC平行,可得一对内错角相等,再根据弦切角等于夹弧所对的圆周角得到一对角相等,等量代换得到∠HFE=∠EAF,再由一个公共角,利用两对对应角相等的两三角形相似,可得三角形HFE与三角形AEF相似,根据相似得比例,再由已知的EH与HA的长求出AE的长,进而求出EF的长.
点评:此题考查了切线的判定,平行线的判定与性质,等腰三角形的性质,圆周角定理,相似三角形的判定与性质,熟练掌握性质与定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案