【题目】如图,已知中,,D是线段AC上一点(不与A,C重合),连接BD,将沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F,若是直角三角形,则AF的长为_________.
【答案】或
【解析】
分别讨论∠E=90°,∠EBF=90°两种情况:①当∠E=90°时,由折叠性质和等腰三角形的性质可推出△BDC为等腰直角三角形,再求出∠ABD=∠ABE=22.5°,进而得到∠F=45°,推出△ADF为等腰直角三角形即可求出斜边AF的长度;②当∠EBF=90°时,先证△ABD∽△ACB,利用对应边成比例求出AD和CD的长,再证△ADF∽△CDB,利用对应边成比例求出AF.
①当∠E=90°时,由折叠性质可知∠ADB=∠E=90°,如图所示,
在△ABC中,CA=CB=4,∠C=45°
∴∠ABC=∠BAC==67.5°
∵∠BDC=90°,∠C=45°
∴△BCD为等腰直角三角形,
∴CD=BC=,∠DBC=45°
∴∠EBA=∠DBA=∠ABC-∠DBC=67.5°-45°=22.5°
∴∠EBF=45°
∴∠F=90°-45°=45°
∴△ADF为等腰直角三角形
∴AF=
②当∠EBF=90°时,如图所示,
由折叠的性质可知∠ABE=∠ABD=45°,
∵∠BAD=∠CAB
∴△ABD∽△ACB
∴
由情况①中的AD=,BD=,
可得AB=
∴AD=
∴CD=
∵∠DBC=∠ABC-∠ABD=22.8°
∵∠E=∠ADB=∠C+∠DBC=67.5°
∴∠F=22.5°=∠DBC
∴EF∥BC
∴△ADF∽△CDB
∴
∴
∵∠E=∠BDA=∠C+∠DBC=45°+67.5°-∠ABD=112.5°-∠ABD,∠EBF=2∠ABD
∴∠E+∠EBF=112.5°+∠ABD>90°
∴∠F不可能为直角
综上所述,AF的长为或.
故答案为:或.
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象交反比例函数的图象于两点,交x轴于点C,P是x轴上一个动点。
(1)求反比例函数与一次函数的关系式;
(2)根据图象回答:当x为何值时,一次函数的值大于反比例函数的值?
(3)若与相似,请直接写出点P的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司销售一种产品,经分析发现月销量y(万件)于月份x(月)的关系如下表所示,每件产品的利润z(元)与x月份(月)满足关系式z=-x+20(1≤x≤12,且x为整数)
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
y | 27 | 30 | 33 | 36 | 39 | 42 | 45 | 48 | 46 | 44 | 42 | 40 |
(1)请你根据表格分别求出1≤x≤8,9 ≤x≤12(x为整数)时,销售量y(万件)与月份x(月)的关系式;
(2)求当x为何值时,月利润w(万元)有最大值,最大值为多少?
(3)求该公司月利润不少于576万元的月份是哪几个月?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中, AB=AC=10,线段BC在轴上,BC=12,点B的坐标为(-3,0),线段AB交轴于点E,过A作AD⊥BC于D,动点P从原点出发,以每秒3个单位的速度沿轴向右运动,设运动的时间为秒.
(1)当△BPE是等腰三角形时,求的值;
(2)若点P运动的同时,△ABC以B为位似中心向右放大,且点C向右运动的速度为每秒2个单位,△ABC放大的同时高AD也随之放大,当以EP为直径的圆与动线段AD所在直线相切时,求的值和此时点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是半圆O的直径,M,N是半圆上不与A,B重合的两点,且点N在上.
(1)如图1,MA=6,MB=8,∠NOB=60°,求NB的长;
(2)如图2,过点M作MC⊥AB于点C,P是MN的中点,连接MB,NA,PC,试探究∠MCP,∠NAB,∠MBA之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:
(1)将△ABC绕O点逆时针旋转90°,得到△A1B1C1;
(2)以点P(-1,1)为位似中心,在△ABC的异侧作位似变换,且使△ABC的面积扩大为原来的4倍,得到△A2B2C2,并写出点A2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的y与x的部分对应值如表:
x | 1 | 0 | 2 | 3 | 4 |
y | 5 | 0 | 4 | 3 | 0 |
下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(,2),B(,3)是抛物线上两点,则,其中正确的个数是 ( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形 ABCD 中,E 为 BC 边中点.
(Ⅰ)已知:如图,若 AE 平分∠BAD,∠AED=90°,点 F 为 AD 上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD
(Ⅱ)已知:如图,若 AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,点 F,G 均为 AD上的点,AF=AB,GD=CD.求证:(1)△GEF 为等边三角形;(2)AD=AB+ BC+CD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com