精英家教网 > 初中数学 > 题目详情
9.下列各数中,是无理数的是(  )
A.cos30°B.(-π)0C.-$\frac{1}{3}$D.$\sqrt{64}$

分析 根据无理数是无限不循环小数,可得答案.

解答 解:A、cos30=$\frac{\sqrt{3}}{2}$是无理数,
B、(-π)0=1是有理数,
C、-$\frac{1}{3}$是有理数,故C错误;
D、$\sqrt{64}$=8是有理数,故D错误;
故选:A.

点评 此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,$\sqrt{6}$,0.8080080008…(每两个8之间依次多1个0)等形式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.函数y=(m2-m)${x}^{{m}^{2}-3m+1}$是反比例函数,则(  )
A.m≠0B.m≠0且m≠1C.m=2D.m=1或2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)计算:(2cos30°-1)0+($\frac{1}{3}$)-1-$\sqrt{(-5)^{2}}$-|-1|
(2)解方程:1+$\frac{5x-4}{x-2}$=$\frac{4x+10}{3x-6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知:如图,矩形ABCD的一条边AB=10,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,折痕为AO.
(1)求证:△OCP∽△PDA;
(2)若△OCP与△PDA的面积比为1:4,求边AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列四个数中,是无理数的是(  )
A.$\frac{π}{2}$B.$\frac{22}{7}$C.$\root{3}{-8}$D.($\sqrt{3}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,抛物线y=-x2+2x+3经过点A、B、C,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,则实数m的变化范围为-$\frac{5}{4}$≤m≤5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知A,B是抛物线y=$\frac{1}{4}$x2上的两点,且OA⊥OB.(O为原点)
(1)求A,B两点的横坐标之积和纵坐标之积;
(2)问直线AB是否恒过定点,若是,求出定点坐标,并说明理由.
(3)求△AOB面积的最小值;
(4)若抛物线上有一点C(2,1),将OA⊥OB改为CA⊥CB,直线AB是否恒过定点?若是,直接写出定点坐标,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,△A0B是边长为3的等边三角形,直线l与x轴、0A、AB分别交于点C、D、E,0C=AE.过点E作EF∥0A,交x轴于点F.
(1)点A的坐标为:($\frac{3}{2}$,$\frac{3\sqrt{3}}{2}$);(结果保留根号)
(2)求证:点C、F关于y轴对称;
(3)若AD=EF.求直线l对应的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.比较(27)4与(343的大小,可得(  )
A.(27)4=(343B.(27)4>(343C.(27)4<(343D.无法确定

查看答案和解析>>

同步练习册答案