精英家教网 > 初中数学 > 题目详情

【题目】ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.

(1)如图1,点DBC边上.

①依题意补全图1;

②作DFBCAB于点F,若AC=8,DF=3,求BE的长;

(2)如图2,点DBC边的延长线上,用等式表示线段AB、BD、BE之间的数量关系(直接写出结论).

【答案】(1)①图见解析;②BE=5;(2)见解析.

【解析】

(1)①根据题意画出图形即可;

②根据SAS证明ADF≌△EDB,根据全等三角形的性质得到AF=EB.在ABCDFB中,根据勾股定理得到AB=8,BF=3.再根据线段的和差关系得到AF=AB-BF=5,即BE=5

(2)根据AAS证明ACD≌△DFE,根据全等三角形的性质得到EF=DC.再根据等腰直角三角形的性质得到EF=BE,BC=AB,根据等量关系即可得到BD=BE+AB.

(1)①补全图形,如图1所示.

②如图1

由题意可知AD=DE,ADE=90°.

DFBC,

∴∠FDB=90°.

∴∠ADF=EDB.

∵∠C=90°,AC=BC,

∴∠ABC=DFB=45°.

DB=DF.

∴△ADF≌△EDB.

AF=EB.

ABCDFB中,

AC=8,DF=3,

A=8,BF=3

AF=AB-BF=5

BE=5

(2)如图2,

BD=BE+AB.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点D是∠AOB的平分线OC上任意一点,过DDEOBE,以DE为半径作⊙D

①判断⊙DOA的位置关系, 并证明你的结论。

②通过上述证明,你还能得出哪些等量关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O的直径AE10cm,∠B=∠EAC,则AC的长为(  )

A. 5cm B. 5cm C. 5 cm D. 6cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点,过点做直线平行于轴,点关于直线对称点为

1)求点的坐标;

2)点在直线上,且位于轴的上方,将沿直线翻折得到,若点恰好落在直线上,求点的坐标和直线的解析式;

3)设点在直线上,点在直线上,当为等边三角形时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中踏集团销售某种商品,每件进价为10元。在销售过程中发现,平均每天的销售量y(件)与销售价x(元/件)(不低于进价)之间的关系可近似的看做一次函数:

(1)求中踏集团平均每天销售这种商品的利润w(元)与销售价x之间的函数关系式;

(2)当这种商品的销售价为多少元时,可以获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市少体校为了从甲、乙两名运动员中选出一名运动员参加省运动会百米比赛,组织了选拔测试,分别对两人进行了五次测试,成绩(单位:秒)以及平均数、方差如表:

13

13

14

16

18

x=14.8

S=3.76

14

14

15

15

16

x=14.8

S=0.56

学校决定派乙运动员参加比赛,理由是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:

(1)在这次抽样调查中,一共调查了多少名学生?

(2)请把折线统计图(图1)补充完整;

(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;

(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,反比例函数与二次函数yk(x2x1)的图象交于点A(1k)和点B(1,-k)

(1)k=-2时,求反比例函数的解析式;

(2)要使反比例函数与二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围.

(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.

查看答案和解析>>

同步练习册答案