【题目】在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).
(1)当k=-2时,求反比例函数的解析式;
(2)要使反比例函数与二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围.
(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.
【答案】(1)y=-(2)k<0 x≤-(3)k=±
【解析】
解:(1)因为k=-2,所以A(1,-2),
设反比例函数为y=,因为点A在函数的图象上,所以-2=,
解得k1=-2,
反比例函数解析式为y=-.
(2)由y=k(x2+x-1)=k-k,得抛物线对称轴为直线x=-,
当k>0时,反比例函数不存在y随着x的增大而增大的取值范围,所以k<0,
此时,当x<0或x>0时,反比例函数值y随着x的增大而增大;
当x≤-时,二次函数值y随着x的增大而增大,所以自变量x的取值范围是x≤-.
(3)由题(2)得点Q的坐标为,
因为AQ⊥BQ,点O是AB的中点,
所以OQ=AB=OA,
得+k2=12+k2,解得k=±.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.
(1)如图1,点D在BC边上.
①依题意补全图1;
②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长;
(2)如图2,点D在BC边的延长线上,用等式表示线段AB、BD、BE之间的数量关系(直接写出结论).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,地面上小山的两侧有,两地,为了测量,两地的距离,让一热气球从小山西侧地出发沿与成角的方向,以每分钟的速度直线飞行,分钟后到达处,此时热气球上的人测得与成角,请你用测得的数据求,两地的距离长.(结果用含非特殊角的三角函数和根式表示即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.
(1)求抛物线的解析式及点D的坐标;
(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(3)若点P是x轴上方抛物线上的动点,以PB为边作正方形PBFG,随着点P的运动,正方形的大小、位置也随着改变,当顶点F或G恰好落在y轴上时,请直接写出点P的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于多项式Ax2bxc(b、c为常数),作如下探究:
(1)不论x取何值,A都是非负数,求b与c满足的条件;
(2)若A是完全平方式,
①当c=9时,b= ;当b=3时,c= ;
②若多项式Bx2dxc与A有公因式,求d的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB的高,他们来到与建筑物AB在同一平地且相距12米的建筑物CD上的C处观察,测得某建筑物顶部A的仰角为30°、底部B的俯角为45°.求建筑物AB的高(精确到1米).(可供选用的数据:≈1.4,≈1.7).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.
(1)求证:AE=BC;
(2)如图2,过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′、BF′,求证:CE′=BF′.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】Rt△ABC中,AB=AC=2,∠A=90°,D为BC中点,点E,F分别在AB,AC上,且BE=AF,
(1)求证:ED=FD,
(2)求证:DF⊥DE,
(3)求四边形AFDE的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com