【题目】如图,矩形ABCD中,AB=4,BC=6,M是BC的中点,DE
AM,E为垂足.
(1)证明:△ABM∽△DEA;
(2)求△ADE的面积.
![]()
【答案】(1)见解析;(2)
.
【解析】
(1)先根据矩形的性质,得到AD∥BC,则∠DAE=∠AMB,又由∠DEA=∠B,根据有两角对应相等的两三角形相似,即可证明出△DAE∽△AMB;(2)由△DAE∽△AMB,根据相似三角形的对应边成比例,即可求出DE、AE的长,进而可求面积.
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DAE=∠AMB,
又∵∠DEA=∠B=90°,
∴△DAE∽△AMB;
(2)由(1)知△DAE∽△AMB,
∴DE:AD=AB:AM,
∵M是边BC的中点,BC=6,
∴BM=3,
又∵AB=4,∠B=90°,
∴AM=5,
∴
,
∴
,
,
∴ △ADE的面积为
.
科目:初中数学 来源: 题型:
【题目】如图,一次函数
=
与反比例函数
=
(
>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为
,则该反比例函数的函数表达式为__________________________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知直线
,线段
在直线
上,
于点
,且
,
是线段
上异于两端点的一点,过点
的直线分别交
、
于点
、
(点
、
位于点
的两侧),满足
,连接
、
.
(1)求证:
;
(2)连结
、
,
与
相交于点
,如图2,
①当
时,求证:
;
②当
时,设
的面积为
,
的面积为
,
的面积为
,求
的值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:①平分弦的直径垂直于弦;②在n次随机实验中,事件A出现m次,则事件A发生的频率
,就是事件A的概率;③各角相等的圆外切多边形一定是正多边形;④各角相等的圆内接多边形一定是正多边形;⑤若一个事件可能发生的结果共有n种,则每一种结果发生的可能性是
.其中正确的个数( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”
(1)求抛物线y=x2﹣2x+3与x轴的“亲近距离”;
(2)在探究问题:求抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.
(3)若抛物线y=x2﹣2x+3与抛物线y=
+c的“亲近距离”为
,求c的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE
(1)求证:CE=AD
(2)当点D在AB中点时,四边形BECD是什么特殊四边形?说明理由
(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在
中,弦
垂直于直径
,垂足为
,连结
,将
沿
翻转得到
,直线
与直线
相交于点
.
![]()
(1)求证:
是
的切线;
(2)若
为
的中点,①求证:四边形
是菱形;②若
,求
的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD(AB>AD)中,点M是边DC上的一点,点P是射线CB上的动点,连接AM,AP,且∠DAP=2∠AMD.
(1)若∠APC=76°,则∠DAM= ;
(2)猜想∠APC与∠DAM的数量关系为 ,并进行证明;
(3)如图1,若点M为DC的中点,求证:2AD=BP+AP;
(4)如图2,当∠AMP=∠APM时,若CP=15,
=
时,则线段MC的长为 .
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com