【题目】如图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若BD=﹣1,则∠ACD= °.
【答案】112.5.
【解析】
试题分析:如图,连结OC.根据切线的性质得到OC⊥DC,根据线段的和得到OD=,根据勾股定理得到CD=1,根据等腰直角三角形的性质得到∠DOC=45°,根据等腰三角形的性质和三角形外角的性质得到∠OCA=∠DOC=22.5°,再根据角的和得到∠ACD的度数.
解:如图,连结OC.
∵DC是⊙O的切线,
∴OC⊥DC,
∵BD=﹣1,OA=OB=OC=1,
∴OD=,
∴CD===1,
∴OC=CD,
∴∠DOC=45°,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠OCA=∠DOC=22.5°,
∴∠ACD=∠OCA+∠OCD=22.5°+90°=112.5°.
故答案为:112.5.
科目:初中数学 来源: 题型:
【题目】如图,已知AD与AB,CD交于A,D两点,EC,BF与AB,CD交于E,C,B,F,且∠1=∠2,∠B=∠C,
(1)说明CE∥BF.
(2)你能得出∠B=∠3和∠A=∠D这两个结论吗?若能,写出你得出结论的过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别写出五边形ABCDE的五个顶点的坐标,然后作出:
(1)关于原点O对称的图形,并写出对称图形的顶点的坐标;
(2)以原点O为中心,把它缩小为原图形的,并写出新图形的顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,观察二次函数y=ax2+bx+c的图象,下列结论:
①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.
其中正确的是( )
A.①② B.①④ C.②③ D.③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
求证:(1)AF=CD;
(2)∠AFC=∠CDA.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )
A.11 B.5.5 C.7 D.3.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com