精英家教网 > 初中数学 > 题目详情

【题目】在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1 , 设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.

(1)如图1,当α=90°时,线段BD1的长等于 , 线段CE1的长等于;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1= CE1 , 且BD1⊥CE1
(3)①设BC的中点为M,则线段PM的长为;②点P到AB所在直线的距离的最大值为 . (直接填写结果)

【答案】
(1)2 ;2
(2)

证明:当α=135°时,如图2,

∵Rt△AD1E是由Rt△ADE绕点A逆时针旋转135°得到,

∴AD1=AE1,∠D1AB=∠E1AC=135°,

在△D1AB和△E1AC中

∴△D1AB≌△E1AC(SAS),

∴BD1=CE1,且∠D1BA=∠E1CA,

记直线BD1与AC交于点F,

∴∠BFA=∠CFP,

∴∠CPF=∠FAB=90°,

∴BD1⊥CE1


(3)2 ;1+
【解析】解:(1)∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,
∴AE=AD=2,
∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1 , 设旋转角为α(0<α≤180°),
∴当α=90°时,AE1=2,∠E1AE=90°,
∴BD1= =2 ,E1C= =2
所以答案是:2 ,2
3)解:①如图2,

∵∠CPB=∠CAB=90°,BC的中点为M,
∴PM= BC,
∴PM= =2
所以答案是:2
②如图3,作PG⊥AB,交AB所在直线于点G,

∵D1 , E1在以A为圆心,AD为半径的圆上,
当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,
此时四边形AD1PE1是正方形,PD1=2,则BD1= =2
故∠ABP=30°,
则PB=2+2
故点P到AB所在直线的距离的最大值为:PG=1+
所以答案是:1+
【考点精析】根据题目的已知条件,利用等腰三角形的性质和切线的性质定理的相关知识可以得到问题的答案,需要掌握等腰三角形的两个底角相等(简称:等边对等角);切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10

(1)守门员最后是否回到了球门线的位置?

(2)在练习过程中,守门员离开球门最远距离是多少米?

(3)守门员全部练习结束后,他共跑了多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知多项式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).

(1)若多项式的值与字母x的取值无关,求a、b的值.

(2)在(1)的条件下,先化简多项式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.

(3)在(1)的条件下,求(b+a2+(2b+a2+(3b+a2++(9b+a2)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】世界杯比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定开始计时时,守门员正好在球门线上)

(1)守门员最后是否回到球门线上?

(2)守门员离开球门线的最远距离达多少米?

(3)如果守门员离开球门线的距离超过10米(不包括10米),则对方球员挑射极可能造成破门.请问在这一时间段内,对方球员有几次挑射破门的机会?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算.

(1). . (2).

(3). (4).

(5). (6).

(7). .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴是一个非常重要的数学工具,它使数和数轴上的点建立对应关系,解释了数与点之间的内在联系,它是“数形结合”的基础。

如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答

(1)将点B向右移动4个单位长度后到达点D,点D表示的数是 ,A、D两点之间的距离是

(2)移动点A到达E点,使B、C、E三点的其中某一点到其它两点的距离相等,写出点E在数轴上对应的数值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,在正方形ABCD中,AB=1, 是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的动点(点E与点A,D不重合),过E作 所在圆的切线,交边DC于点F,G为切点.
(1)求证:EA=EG;
(2)设AE=x,FC=y,求y关于x的函数关系式,并直接写出x的取值范围;
(3)如图2所示,将△DEF沿直线EF翻折后得△D1EF,连接AD1 , D1D,试探索:当点E运动到何处时,△AD1D与△ED1F相似?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)﹣(﹣7)﹣(﹣5)+(﹣4)

(2)(﹣3)+12.5+(﹣16)﹣(﹣2.5)

(3)(﹣24)×(

(4)18×(﹣)+13×﹣4×

(5)﹣12018 - ×[2×(﹣2)+10].

查看答案和解析>>

同步练习册答案