精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为(
A.4
B.5
C.6
D.7

【答案】B
【解析】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP. 此时DP+CP=DP+PC′=DC′的值最小.
∵DC=1,BC=4,
∴BD=3,
连接BC′,由对称性可知∠C′BE=∠CBE=45°,
∴∠CBC′=90°,
∴BC′⊥BC,∠BCC′=∠BC′C=45°,
∴BC=BC′=4,
根据勾股定理可得DC′= = =5.
故选B.

【考点精析】本题主要考查了等腰直角三角形和轴对称-最短路线问题的相关知识点,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察下列等式:

1个等式:a1==

2个等式:a2==

3个等式:a3==

4个等式:a4==

按上述规律,回答以下问题:

(1)用含n的代数式表示第n个等式:an=_____=_____

(2)式子a1+a2+a3+…+a20=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.

(1)如图,若∠AOC=40°,求∠DOE的度数;

(2)如图,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示)

(3)将图中的∠COD绕顶点O顺时针旋转至图的位置,OE平分∠BOC.

探究∠AOC∠DOE的度数之间的关系,写出你的结论,并说明理由;

∠AOC的内部有一条射线OF,且∠AOC﹣3∠AOF=2∠BOE,试确定∠AOF∠DOE的度数之间的关系,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=3,点DAB的中点,点E为线段BC上的点,连接DE,把△BDE沿着DE翻折得△B1DE

(1)当ADB1C构成的四边形为平行四边形,求DE的长;

(2)当DB1AC时,求△DE B1和△ABC重叠部分的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在每个边长都为1的小正方形组成的网格中,点A,B,C均为格点.
(Ⅰ)线段AB的长度等于
(Ⅱ)若P为线段AB上的动点,以PC、PA为邻边的四边形PAQC为平行四边形,当PQ长度最小时,请你借助网格和无刻度的直尺画出该平行四边形,并简要说明你的作图方法(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,平面直角坐标系中,直线AB:y=﹣x+bx轴于点A(8,0),交y轴正半轴于点B.

(1)求点B的坐标;

(2)如图2,直线ACy轴负半轴于点C,AB=BC,P为线段AB上一点,过点Py轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求dt之间的函数关系式;

(3)(2)的条件下,MCA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:( )÷(1﹣ ),其中x=( 1﹣(2017﹣ 0 , y= sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n相伴数对,记为(m,n).

(1)若(m,1)是相伴数对,则m=_____

(2)(m,n)是相伴数对,则代数式m﹣[n+(6﹣12n﹣15m)]的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.

(1)判断BEC的形状,并说明理由?

(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;

(3)求四边形EFPH的面积.

查看答案和解析>>

同步练习册答案