精英家教网 > 初中数学 > 题目详情

【题目】如图是小明用七巧板拼出的图案.

(1)请赋予该图形一个积极的含义;

(2)请你找出图中2组平行线段和2对互相垂直的线段,用符号表示它们;

(3)找出图中一个锐角、一个钝角和一个直角,将它们表示出来,并指出它们的度数.

【答案】(1)答案不唯一,如别墅; (2)答案不唯一,如:,,,; (3)答案不唯一,如锐角:,度数为45°;直角:,度数为90°;钝角: ,度数为135°.

【解析】

解答此题要熟悉七巧板的结构:五个等腰直角三角形(有两对全等三角形);一个正方形;一个平行四边形,根据这些图形的性质便可解答.

(1)别墅;

(2)PKAQCD,MNPGEFQTAB

PGNTDBBC

(3)锐角:∠KPG=45°

直角:∠PQT=90°

钝角:∠AQT=135°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算:﹣ +20160+|﹣3|+4cos30°
(2)解方程:x2+2x﹣8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并猜测∠FCN的度数,并说明理由;
(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD 面上的概率为 ;若存在,指出其中的一种平移方式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC,AB=AC,D,A,E三点都在直线mBDA=AEC=BAC,BD=3,CE=6,DE的长为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.
(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.
(2)摸出的两个球上数字之和为多少时的概率最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,BDABC的中线,CEBD于点E,AFBD,BD的延长线于点F.

(1)试探索BE,BFBD三者之间的数量关系并加以证明;

(2)连接AE,CF,求证:AECF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线x轴、y轴分别交于A,B两点,COB的中点,DAB上一点,四边形OEDC是菱形,则OAE的面积为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,圆D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.

(1)D点的坐标是 , 圆的半径为
(2)求经过C、A、B三点的抛物线所对应的函数关系式;
(3)设抛物线的顶点为F,试证明直线AF与圆D相切;
(4)在x轴下方的抛物线上,是否存在一点N,使△CBN面积最大,最大面积是多少?并求出N点坐标.

查看答案和解析>>

同步练习册答案