精英家教网 > 初中数学 > 题目详情
在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过点M作MN∥BC交AC于点N,以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.
考点:圆的综合题
专题:
分析:(1)由于三角形PMN和AMN的面积相当,那么可通过求三角形AMN的面积来得出三角形PMN的面积,求三角形AMN的面积可根据三角形AMN和ABC相似,根据相似比的平方等于面积比来得出三角形AMN的面积;
(2)要求重合部分的面积首先看P点在三角形ABC内部还是外面,因此可先得出这两种情况的分界线即当P落到BC上时,x的取值,那么P落点BC上时,MN就是三角形ABC的中位线,此时AM=2,因此可分两种情况进行讨论:
①当0<x≤2时,此时重合部分的面积就是三角形PMN的面积,三角形PMN的面积(1)中已经求出,即可的x,y的函数关系式.②当2<x<4时,如果设PM,PN交BC于E,F,那么重合部分就是四边形MEFN,可通过三角形PMN的面积-三角形PEF的面积来求重合部分的面积.不难得出PN=AM=x,而四边形BMNF又是个平行四边形,可得出FN=BM,也就有了FN的表达式,就可以求出PF的表达式,然后参照(1)的方法可求出三角形PEF的面积,即可求出四边形MEFN的面积,也就得出了y,x的函数关系式.然后根据两种情况得出的函数的性质,以及对应的自变量的取值范围求出y的最大值即可.
解答:解:(1)∵MN∥BC,
∴∠AMN=∠B,∠ANM=∠C.
∴△AMN∽△ABC.
AM
AB
=
AN
AC
,即
x
4
=
AN
3

∴AN=
3
4
x;
∴S=S△MNP=S△AMN=
1
2
3
4
x•x=
3
8
x2.(0<x<4)

(2)随点M的运动,当P点落在直线BC上时,连接AP,则O点为AP的中点.
∵MN∥BC,
∴∠AMN=∠B,∠AOM=∠APB,
∴△AMO∽△ABP,
AM
AB
=
AO
AP
=
1
2

∵AM=MB=2,
故以下分两种情况讨论:
①当0<x≤2时,y=S△PMN=
3
8
x2
∴当x=2时,y最大=
3
8
×4=
3
2

②当2<x<4时,设PM,PN分别交BC于E,F,
∵四边形AMPN是矩形,
∴PN∥AM,PN=AM=x,
又∵MN∥BC,
∴四边形MBFN是平行四边形;
∴FN=BM=4-x,
∴PF=x-(4-x)=2x-4,
又∵△PEF∽△ACB,
∴(
PF
AB
)2=
S△PEF
SABC

∴S△PEF=
3
2
(x-2)2
y=S△MNP-S△PEF=
3
8
x2-
3
2
(x-2)2=-
9
8
x2+6x-6,
当2<x<4时,y=-
9
8
x2+6x-6=-
9
8
(x-
8
3
2+2,
∴当x=
8
3
时,满足2<x<4,y最大=2.
综上所述,当x=
8
3
时,y值最大,最大值是2.
点评:本题主要考查了相似三角形的性质以及二次函数的综合应用,要注意(2)中要根据P点的位置的不同分情况进行讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)若(-4)2013•(
1
4
)2012
=
 

(2)若am=5,an=3,则am-2n=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

下列运算正确的是(  )
A、2a-a=2
B、a3•a2=a5
C、a+b=ab
D、(a32=a9

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个多项式与3x2+x的和等于3x2+4x-1,则这个多项式是(  )
A、-3x+1B、-3x-1
C、3x+1D、3x-1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,AB是⊙O的直径,点C、D在⊙O上两点,弧AC=弧CD,过点C作⊙O的切线,分别交BD、BA延长线于点E、P.
(1)若AD=6,BC=5,求BD的长.
(2)如图2,若AD、BC交于点H,AH=
5
2
,DH=
3
2
,求tan∠PBC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

9的算术平方根是
 
,(±4)2的算术平方根是
 
36
的算术平方根是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道,三条边都相等的三角形叫等边三角形.类似地,我们把弧长等于半径的扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,△ABC的顶点A(1,3),B(1,O),C(3,0).
(1)将△ABC平移得到△A1B1C1,使A点对应点A1落在x轴上,C点对应点C1落在y轴上,在图中画出△A1B1C1
(2)将△A1B1C1绕原点逆时针旋转90°得到△A2B2C2,请直接写出A2、B2、C2的坐标.
(3)请直接写出△ACA2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图正方形AOBC,等腰Rt△EOF中,∠EOF=90°,EF与OB交于G,连接AE、AB、BF.
(1)求证:AE=BF;
(2)若∠AEO=90°,AB=5
2
,OE=3,求OG的长.

查看答案和解析>>

同步练习册答案