精英家教网 > 初中数学 > 题目详情

【题目】如图,已知直线AB与x轴、y轴分别交于点A和点B,OA=4,且OA,OB长是关于x的方程x2﹣mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM,交x轴于点N,点D为OA的中点.

(1)求证:CD是⊙M的切线;
(2)求线段ON的长.

【答案】
(1)

证明:OA、OB长是关于x的方程x2﹣mx+12=0的两实根,OA=4,则OA×OB=12,

得OB=3,⊙M的半径为1.5;

∵BM=CM=1.5,

∴∠OBA=∠BCM.

连结OC,OB是⊙M的直径,则∠ACO=90°,D为OA的中点,

∴OD=AD=CD=2,

∴∠OAC=∠ACD,

又∵∠OAC+∠OBA=90°,

∴∠BCM+∠ACD=90°,

∴∠NCD=90°,

∴CD是⊙M的切线.


(2)

解:∵∠CND=∠CND,∠NOM=∠NCD=90°,

∴△NOM∽△NCD,

= ,即 =

∴NO=


【解析】(1)先根据根与系数的关系求出OB的长,故可得出圆的半径.连结OC,OB是⊙M的直径,则∠ACO=90°,由D为OA的中点得出OD=AD=CD,故可得出∠OAC=∠ACD,再由∠OAC+∠OBA=90°得出∠BCM+∠ACD=90°,故∠NCD=90°,由此得出结论;(2)根据∠CND=∠CND,∠NOM=∠NCD=90°,得出△NOM∽△NCD,再由相似三角形的对应边成比例即可得出结论.
【考点精析】关于本题考查的切线的性质定理,需要了解切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读理解:阅读下列材料:已知二次三项式2x2+x+a有一个因式是(x+2),求另一个因式以及a 的值

解:设另一个因式是(2x+b),

根据题意,得2x2+x+a=(x+2)(2x+b),

展开,得2x2+x+a =2x2+(b+4)x+2b

所以,解得

所以,另一个因式是(2x3),a 的值是6.

请你仿照以上做法解答下题:已知二次三项式3x2 10x m 有一个因式是(x+4),求另一个因式以及m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且GDF=ADF

1求证:ADE≌△BFE;

2连接EG,判断EG与DF的位置关系并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在同一直角坐标系中,反比例函数y= 与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).
(1)求m、c的值;
(2)求二次函数图象的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为(

A.
B.
C.1
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:
(1)x2﹣6x﹣6=0
(2)2x2﹣7x+6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的函数y=k(x+1)和y= (k≠0)在同一坐标系中的图象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD与矩形EFGO在平面直角坐标系中,点B的坐标为(﹣4,4),点F的坐标为(2,1),若矩形ABCD和矩形EFGO是位似图形,点P(点P在线段GC上)是位似中心,则点P的坐标为(

A.(0,3)
B.(0,2.5)
C.(0,2)
D.(0,1.5)

查看答案和解析>>

同步练习册答案