【题目】图①、图②、图③是3×3的正方形网格,每个网格图中有3个小正方形己涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:
(1)在图①中选取1个空白小正方形涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.
(2)在图②中选取1个空白小正方形涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.
(3)在图③中选取2个空白小正方形涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图①、图②、图③中,均只需画出符合条件的一种情形)
科目:初中数学 来源: 题型:
【题目】如图,点A、B在数轴上对应的数分别是a,b,且.
(1)求AB的长;
(2)点C在数轴上对应的数为x,且x是方程2x-1x+2的解,在数轴上是否存在点P,使PA+PBPC,若存在,直接写出点P对应的数;若不存在,说明理由;
(3)在(2)的条件下,若P是A左侧的点,现点P、点A以每秒6个单位长度的速度向右匀速运动,同时点B、点C以每秒2个单位长度的速度向左匀速运动,是否存在t的值,使P到C的距离是A到B的距离的两倍?若存在,求出t值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD为∠BAC的平分线,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC交AC的延长线于F.
(1)求证:BE=CF;
(2)如果AB=7,AC=5,求AE,BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,折叠长方形纸片ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,则折痕AE的长为( )
A.cmB. cmC.12cmD.13 cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC,若△ABC的边长为4,AE=2,则BD的长为( )
A. 2 B. 3 C. D. +1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,线段m,用尺规作图作菱形ABCD,使它的边长为m,一个内角等于其具体步骤如下:
作;
以点A为圆心,线段m长为半径画弧,交AE于点B,交AF于点D;
__________;
连接BC、DC,则四边形ABCD为所作的菱形第步应为
A. 分别以点B、D为圆心,以AF长为半径画弧,两弧交于点C
B. 分别以点E、F为圆心,以AD长为半径画弧,两弧交于点C
C. 分别以点B、D为圆心,以AD长为半径画弧,两弧交于点C
D. 分别以点E、F为圆心,以AF长为半径画弧,两弧交于点C
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题)
如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.
(探究发现)
(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;
(数学思考)
(2)如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;
(拓展引申)
(3)如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题:如图,在平面直角坐标系 xOy 中,A(2,3),B(3,1),C(﹣2,﹣1).
①在图中作出△ABC 关于 x 轴的对称图形△A1B1C1 并写出 A1,B1,C1 的坐标;
②在 y 轴上画出点 P,使 PA+PB 最小.(不写作法,保留作图痕迹)
③求△ABC 的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com