分析 延长EF交CB于M,连接CM,根据正方形的性质得到AD=DC,∠A=∠BCD=90°,由折叠的性质得到∠DFE=∠DFM=90°,通过Rt△DFM≌Rt△DCM,于是得到MF=MC.由等腰三角形的性质得到∠MFC=∠MCF由余角的性质得到∠MFC=∠MBF,于是求得MF=MB,设MF=MB=MC=a,AE=EF=x,根据勾股定理即可得到结论.
解答 解:如图,![]()
延长EF交CB于M,连接CM,
∵四边形ABCD是正方形,
∴AD=DC,∠A=∠BCD=90°,
∵将△ADE沿直线DE对折得到△DEF,
∴∠DFE=∠DFM=90°,
在Rt△DFM与Rt△DCM中,
$\left\{\begin{array}{l}{DF=DC}\\{DM=DM}\end{array}\right.$,
∴Rt△DFM≌Rt△DCM,
∴MF=MC,
∴∠MFC=∠MCF,
∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,
∴∠MFB=∠MBF,
∴MB=MC,
设MF=MC=BM=a,AE=EF=x,
∵BE2+BM2=EM2,
即(2a-x)2+a2=(x+a)2,
解得:x=$\frac{2}{3}$a,
∴AE=$\frac{2}{3}$a,
∴$\frac{AB}{AE}$=$\frac{2a}{\frac{2}{3}a}$=3.
点评 本题考查了翻折变换-折叠问题,正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com