精英家教网 > 初中数学 > 题目详情

【题目】化简求值:
(1)已知x= -1,求x2+3x-1的值;
(2)已知 ,求 值.

【答案】
(1)解:当x= -1时,x2+3x-1=( -1)2+3( -1)-1

=2-2 +1+3 -3-1= -1


(2)解:原式= +2ab+ +2 -ab- -3 =ab

当a=-2- ,b= -2 ∴原式=ab=(-2- )( -2)=4-3=1.


【解析】(1)将x的值代入代数式进行计算;
(2)首先将多项式进行化简计算,然后将a、b的值代入化简后的式子进行计算.
【考点精析】根据题目的已知条件,利用代数式求值的相关知识可以得到问题的答案,需要掌握求代数式的值,一般是先将代数式化简,然后再将字母的取值代入;求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α36°

根据上面提供的信息,回答下列问题:

1)写出样本容量、m的值及抽取部分学生体育成绩的中位数;

2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2﹣2bx﹣3(b为常数,b<0).

发现:(1)抛物线y=x2﹣2bx﹣3总经过一定点,定点坐标为   

(2)抛物线的对称轴为直线x=   (用含b的代数式表示),位于y轴的   侧.

思考:若点P(﹣2,﹣1)在抛物线y=x2﹣2bx﹣3上,抛物线与反比例函数y=(k>0,x>0)的图象在第一象限内交点的横坐标为a,且满足2<a<3,试确定k的取值范围.

探究:设点A是抛物线上一点,且点A的横坐标为m,以点A为顶点做边长为1的正方形ABCD,AB⊥x轴,点C在点A的右下方,若抛物线与CD边相交于点P(不与D点重合且不在y轴上),点P的纵坐标为﹣3,求b与m之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠APD90°APPBBCCD,则下列结论成立的是( )

A. ΔPAB∽ΔPDA B. ΔABC∽ΔDCA

C. ΔPAB∽ΔPCA D. ΔABC∽ΔDBA

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(

A. 无限小数是无理数;B. 实数可分为有理数和无理数;

C. 任何数都有平方根;D. 零没有平方根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,ABC的顶点A、B、C在小正方形的顶点上,将ABC向下平移4个单位、再向右平移3个单位得到A1B1C1,然后将A1B1C1绕点A1顺时针旋转90°得到A1B2C2

(1)在网格中画出A1B1C1A1B2C2

(2)计算线段AC从开始变换到A1 C2的过程中扫过区域的面积(重叠部分不重复计算)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接AE交OD于点F,连接CE、OE.

(1)求证:OE=CD;

(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方程3x+y=02x+xy=13x+y2x=0x2x+1=0中,二元一次方程的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在3×3的正方形网格(每个小正方形的边长均为1)中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴(水平线为横轴),建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称.

(1)原点是(填字母A,B,C,D );
(2)若点P在3×3的正方形网格内的坐标轴上,且与四个格点A,B,C,D,中的两点能构成面积为1的等腰直角三角形,则点P的坐标为(写出可能的所有点P的坐标)

查看答案和解析>>

同步练习册答案