精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,?OABC的顶点O与坐标原点重合,顶点B的坐标为(4,2),OC边在x轴上.反比例函数y=数学公式(x>0)的图象经过点A,过点A的直线y=-数学公式x+数学公式与x轴交于点E.
(1)直接写出点A的坐标与k的值.
(2)连接BE,所得梯形OABE是等腰梯形吗?请说明理由.
(3)请判断:?OABC的对称中心______(填“在”或“不在”)该反比例函数的图象上.

解:(1)∵四边形OABC是平行四边形,
∴点A的纵坐标=点B的纵坐标=2,
又∵一次函数解析式为:y=-x+
∴2=-x+
解得:x=1,即可得点A的坐标为(1,2).
将点A的坐标代入反比例函数y=,得2=
解得:k=2;

(2)过点A作AM⊥OE于点M,过点B作BN⊥OE于点N,
由题意得点E的坐标为(5,0),
故可得NE=1,OM=1,
∵OA=,BE=,NE=OM,AM=BN,
∴AO=BE,
∴梯形ABEO是等腰梯形;

(3)∵点B的坐标为(4,2),点O的坐标为(0,0),
∴平行四边形的对称中心的坐标为(2,1),
将(2,1)代入反比例函数解析式可得:1=,左边等于右边.
故可得:平行四边形OABC的对称中心在该反比例函数的图象上.
分析:(1)由题意得出点A的纵坐标等于点B的纵坐标,从而代入一次函数解析式可得出点A的横坐标,继而可得出点A的坐标,将点A的坐标代入反比例函数解析式,可得出k的值;
(2)过点A作AM⊥OE于点M,过点B作BN⊥OE于点N,然后求出点E的坐标,从而可判断出OM=NE,也可得出OA=BE,这样即可判断出梯形OABE是等腰梯形;
(3)根据O、B的坐标,可得出?OABC的对称中心的坐标,代入反比例函数即可作出判断.
点评:此题属于反比例函数的综合题,涉及了待定系数法求反比例函数解析式、等腰梯形的判定、勾股定理,难点在第二问,关键是坐标与线段长度之间的转换,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案