精英家教网 > 初中数学 > 题目详情

【题目】某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:

销售量n(件)

n=50﹣x

销售单价m(元/件)

当1≤x≤20时,

当21≤x≤30时,


(1)请计算第15天该商品单价为多少元/件?
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;
(3)这30天中第几天获得的利润最大?最大利润是多少?

【答案】
(1)

解:当x=15,m=20+×15=27.5(元/件).


(2)

解:y==


(3)

解:当1≤x≤20时,y=

则当x=15时,y有最大值,为612.5;

当21≤x≤30时,由y=,可知y随x的增大而减小

∴当x=21时,y最大值==580元

580<612.5,

∴第15天时获得利润最大,最大利润为612.5元.

【解析】(1)当x=15时,在1≤x≤20内,所以代入m=20+x可求得;
(2)分当1≤x≤20时与当21≤x≤30时讨论,用单件利润与销售数量的乘积表示总利润;
(3)求出当1≤x≤20时的最大值,求出当21≤x≤30时的最大值,再作比较.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:
(1)a= , b= , m=
(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;
(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?
(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y= x+

(1)求该抛物线的函数关系式与C点坐标;
(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?
(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);
i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转, 始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;
ii:试求出此旋转过程中,(NA+ NB)的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一扇窗户垂直打开,即OMOPAC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端C在OP上滑动,将窗户OM按图示方向向内旋转37°到达ON位置,此时,点AC的对应位置分别是点B、D.测量出∠ODB为28°,点D到点O的距离为30cm

(1)求B点到OP的距离;
(2)求滑动支架的长.(结果精确到0.1)(数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53,sin 53°≈0.8,cos53°≈0.6,tan53°≈1.33)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的菱形ABCD中, ∠ABC=120°, E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将函数y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数g(x)=sin2x的图象,当x1 , x2满足时,|f(x1)﹣g(x2)|=2, ,则φ的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣asinx﹣1,a∈R.
(1)若a=1,求f(x)在x=0处的切线方程;
(2)若f(x)≥0在区间[0,1)恒成立,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对应的边分别为a,b,c,a﹣b=bcosC.
(1)求证:sinC=tanB;
(2)若a=1,C为锐角,求c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若对任意的实数a,函数f(x)=(x﹣1)lnx﹣ax+a+b有两个不同的零点,则实数b的取值范围是(
A.(﹣∞,﹣1]
B.(﹣∞,0)
C.(0,1)
D.(0,+∞)

查看答案和解析>>

同步练习册答案