精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系xoy中,已知抛物线顶点N的坐标为(数学公式),此抛物线交y轴于B(0,-4),交x轴于A、C两点且A点在C点左边.
(1)求抛物线解析式及A、C两点的坐标.
(2)如果点M为第三象限内抛物线上一个动点且它的横坐标为m,设△AMB的面积为S,求S关于m的函数关系式并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=x上的动点,判断有几个位置使得以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

解:(1)设抛物线解析式为:
∵抛物线交y轴于B(0,-4)


∴抛物线解析式为:

令y=0得:
解得:x1=-4,x2=2
∴A(-4,0),C(2,0);

(2)作MT⊥x轴于T,设M(m,n),
则AT=m+4,MT=-n,TO=-m,BO=4.
∴SAMBO=
∵M(m,n)在抛物线上,

∴SAMBO=
∵S△AOB=
∴S与m的函数关系式为:S=-m2-4m
∵S为m的二次函数且-1<0,
∴抛物线开口向下,
∴S的最大值为

(3)因为点P是抛物线上的动点,点Q是直线y=x上的动点,
所以相应的点Q的坐标为:有两个位置满足条件,此时点Q的坐标为(4,4),(-4,-4).
分析:(1)先设出抛物线解析式,根据题意抛物线交y轴于B(0,-4),求出抛物线解析式,再根据抛物线的特点求出它的横坐标,即可求出A和C的坐标;
(2)先作MT⊥x轴于T,再设M(m,n),得出AT、MT、TO、BO的值,即可得出SAMBO的值,再根M点在抛物线上,求出SAMBO的值,然后求出S与m的函数关系式,得出抛物线开口向下,即可求出S的最大值;
(3)根据(2)的相应的条件,可以直接得出点此时Q的坐标;
点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案