精英家教网 > 初中数学 > 题目详情

【题目】水果中的牛油果和桔子的维生素含量很高,因此深受人们喜爱,农夫果园水果商家11月份购进了第一批牛油果和桔子共300千克,已知牛油果进价每千克15元,售价每千克30元,桔子进价每千克5元,售价每千克10元.

(1)若这批牛油果和桔子全部销售完获利不低于3500元,则牛油果至少购进多少千克?

(2)第一批牛油果和桔子很快售完,于是商家决定购进第二批牛油果和桔子,牛油果和桔子的进价不变,牛油果售价比第一批上涨a%(其中a为正整数),桔子售价比第一批上涨2a%;销量与(1)中获得最低利润时的销量相比,牛油果的销量下降a%,桔子的销量保持不变,结果第二批中已经卖掉的牛油果和桔子的销售总额比(1)中第一批牛油果和桔子销售完后对应最低销售总额增加了2%,求正整数a的值.

【答案】1)牛油果至少购进200千克;(2)正整数a的值为10

【解析】

1)设购进牛油果x千克,则购进桔子(300-x)千克,根据总利润=每千克利润×销售数量结合获利不低于3500元,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论;

2)根据销售总额=销售单价×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.

1)设购进牛油果x千克,则购进桔子(300x)千克,

根据题意得:(3015x+105)(300x≥3500

解得:x≥200

答:牛油果至少购进200千克.

(2)根据题意得:30(1+a%)×200(1﹣a%)+10(1+2a%)×100

=[30×200+10×100] ×1+2%

整理得:-a2+20a=140

解得:a1=10a2=(不合题意,舍去).

答:正整数a的值为10.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.

(1)证明:PC=PE;

(2)求CPE的度数;

(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,若∠ADB是直角,求证:四边形BFDE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一笔直的海岸线上有AB两个观测点,BA的正东方向,AB4km.从A测得灯塔C在北偏东53°方向上,从B测得灯塔C在北偏西45°方向上,求灯塔C与观测点A的距离(精确到0.1km)(参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75sin53°≈0.80cos53°≈0.60tan53°≈1.33)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=10AC=8BC=6,以边AB的中点O为圆心,作半圆与AC相切,点PQ分别是边BC和半圆上的动点,连接PQ,则PQ长的最小值是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方格纸中每个小正方形的边长都是单位1,OAB在平面直角坐标系中的位置如图所示.解答问题:

(1)请按要求对ABO作如下变换:

OAB向下平移2个单位,再向左平移3个单位得到O1A1B1

以点O为位似中心,位似比为2:1,将ABC在位似中心的异侧进行放大得到OA2B2

(2)写出点A1,A2的坐标:

(3)OA2B2的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列两则材料,回答问题:

材料一:我们将称为一对“对偶式”因为,所以构造“对俩式”相乘可以有效地将中的去掉.例如:已知,求 的值.解:

材料二:如图,点,点,以AB为斜边作,则,于是,所以.反之,可将代数式的值看作点到点的距离.

例如:=

所以可将代数式的值看作点到点的距离.

利用材料一,解关于x的方程:,其中

利用材料二,求代数式的最小值,并求出此时yx的函数关系式,写出x的取值范图;

所得的yx的函数关系式和x的取值范围代入中解出x,直接写出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】铁路建设助推经济发展,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.

(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?

(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m%小时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】构造图形解题,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:

实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S四边形ABCD=SABC+SADE+SABE得:a+b2=2×ab+c2,化简得:a2+b2=c2

实例二:欧几里得的《几何原本》记载,关于x的方程x2+ax=b2的图解法是:画RtABC,使∠ACB=90°BC=AC=|b|,再在斜边AB上截取BD=,则AD的长就是该方程的一个正根(如实例二图).

请根据以上阅读材料回答下面的问题:

1)如图1,请利用图形中面积的等量关系,写出甲图要证明的数学公式是______,乙图要证明的数学公式是______,体现的数学思想是______

2)如图2,若2-8是关于x的方程x2+ax=b2的两个根,按照实例二的方式构造RtABC,连接CD,求CD的长;

3)若xyz都为正数,且x2+y2=z2,请用构造图形的方法求的最大值.

查看答案和解析>>

同步练习册答案