精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=10AC=8BC=6,以边AB的中点O为圆心,作半圆与AC相切,点PQ分别是边BC和半圆上的动点,连接PQ,则PQ长的最小值是_______.

【答案】1

【解析】

O、Q、P三点一线且OP⊥BC时,PQ有最小值,设AC与圆的切点为D,连接OD,分别利用三角形中位线定理可求得ODOP的长,则可求得PQ的最小值.

当O、Q、P三点一线且OP⊥BC时,PQ有最小值,设AC与圆的切点为D,连接OD,如图所示:


∵AC为圆的切线,
∴OD⊥AC,
∵AC=8,BC=6,AB=10,
∴AC2+BC2=AB2
∴∠ACB=90°,
∴OD∥BC,且O为AB中点,
∴OD为△ABC的中位线,
∴OD=BC=3,
同理可得PO=AC=4,
∴PQ=OP-OQ=4-3=1,
故答案是:1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】请在右边的平面直角坐标系中描出以下三点:并回答如下问题:

在平面直角坐标系中画出△ABC

在平面直角坐标系中画出△ABC′;使它与关于x轴对称,并写出点C′的坐标______

判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的顶点坐标分别为A(-51),B(-11),C(-43).

1)若A1B1C1ABC关于y轴对称,点ABC的对应点分别为A1B1C1,请画出A1B1C1并写出A1B1C1的坐标;

2)若点P为平面内不与C重合的一点,PABABC全等,请写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣2x+4的图象分别与x轴、y轴交于点AB

1)求AOB的面积;

2)在该一次函数图象上有一点Px轴的距离为6,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,合肥市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)请把折线统计图补充完整;

(2)求扇形统计图中,网络文明部分对应的圆心角的度数;

(3)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上任意一点,且CD切⊙O于点D.

(1)试求∠AED的度数.

(2)若⊙O的半径为cm,试求△ADE面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)解方程:

(2)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DEBE,求证:△BOE≌△DOF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+2x与x轴相交于点B,其对称轴为x=3.

(1)求直线AB的解析式;

(2)过点O作直线l,使lAB,点P是l上一动点,设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;

(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使OPQ为直角三角形且OP为直角边,若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】重庆李子坝轻轨站穿楼而过成网红,小明想要测量轻轨站穿楼时轨道与大楼连接处距离地面的高度,他站在点处测得轨道与大楼连接处顶端的仰角为,向前走了米到达处,再沿着坡度为,长度为米台阶到达处,测得轨道与大楼连接处顶端的仰角为,已知小明的身高为米,则的高度约为( )米(精确到,参考数据:

A. B. C. D.

查看答案和解析>>

同步练习册答案