精英家教网 > 初中数学 > 题目详情

【题目】重庆李子坝轻轨站穿楼而过成网红,小明想要测量轻轨站穿楼时轨道与大楼连接处距离地面的高度,他站在点处测得轨道与大楼连接处顶端的仰角为,向前走了米到达处,再沿着坡度为,长度为米台阶到达处,测得轨道与大楼连接处顶端的仰角为,已知小明的身高为米,则的高度约为( )米(精确到,参考数据:

A. B. C. D.

【答案】D

【解析】

如图,过E点作EH⊥MN的延长线于H,作Rt△BCD,∠D=90°,过点FFG⊥MNG,由题意已知,FG=AE=1.6米,∠HEM=45°,∠GFM=53°,在Rt△BCD中,求得CD,BD的长,从而得到AD,NH的长,然后设MN长为x米,在Rt△GMF中,利用三角函数求得GF关于x的关系式,然后在Rt△MHE中,根据MH=HE,得到关于x的方程,然后求解方程即可.

解:如图,过E点作EH⊥MN的延长线于H,作Rt△BCD,∠D=90°,过点FFG⊥MNG,由题意已知,FG=AE=1.6米,∠HEM=45°,∠GFM=53°,

∵CD:BD=1:2.4,BC=13m,

∴BD=12m,CD=5m

∵AB=1m,AE=1.6m

∴AD=12+1=13m,NH=5﹣1.6=3.4m

MN长为x米,

∵∠GFM=53°,

∴∠GMF=37°,

Rt△GMF中,

=0.75,即GF=0.75·GM=0.75(x﹣1.6),

Rt△MHE中,

∵∠HEM=45°,

∴MH=HE,MN+NH=GF+AD,

x+3.4=0.75(x﹣1.6)+13,

解得x=33.6.

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=10AC=8BC=6,以边AB的中点O为圆心,作半圆与AC相切,点PQ分别是边BC和半圆上的动点,连接PQ,则PQ长的最小值是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线轴分别交于点A和点BMOB上一点,若将△ABM沿AM折叠,点B恰好落在轴上的点B′处,试求出直线AM的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知点A(1,a是反比例函数的图象上一点直线与反比例函数的图象的交点为点BDB(3,﹣1),

(1)求反比例函数的解析式

(2)求点D坐标并直接写出y1y2x的取值范围

(3)动点Px,0)x轴的正半轴上运动当线段PA与线段PB之差达到最大时求点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数与反比例函数相交于两点,与轴,轴分别交于两点,已知的面积为.

(1)求一次函数和反比例函数的解析式;

(2)连接,点是线段的中点,直线向上平移个单位将的面积分成两部分,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此进行下去,则正方形A2019B2019C2019D2019的面积为(  )

A.52017B.52018C.52019D.52020

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD在平面直角坐标系的第一象限内,BCx轴平行,AB=1,点C的坐标为(6,2),EAD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.

(1)求反比例函数的解析式和点E的坐标;

(2)求直线BF的解析式;

(3)直接写出y1>y2时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,BD的垂直平分线分别交ABCDBDEFO,连接DEBF

1)求证:四边形BEDF是菱形;

2)若AB=16cmBC=8cm,求四边形DEBF的面积.

查看答案和解析>>

同步练习册答案