精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,ABC的顶点坐标分别为A(-51),B(-11),C(-43).

1)若A1B1C1ABC关于y轴对称,点ABC的对应点分别为A1B1C1,请画出A1B1C1并写出A1B1C1的坐标;

2)若点P为平面内不与C重合的一点,PABABC全等,请写出点P的坐标.

【答案】1)图见解析,A151),B111),C143);(2)(-23),(-2-1),(-4-1

【解析】

1)直接利用关于y轴对称点的性质画出相对应的A1B1C1并且写出对应点坐标即可;

2)直接利用全等三角形性质找出符合题意得点P位置,从而写出坐标即可.

1)如图所示:

A1坐标为(51),B1坐标为(11),C1坐标为(43);

(2)P点位置如(1)图中所示,

P对应坐标为:(-23),(-2-1),(-4-1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,

(1)求DE的长;

(2)过点EF作EF⊥CE,交AB于点F,求BF的长;

(3)过点E作EG⊥CE,交CD于点G,求DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列方程:①;②;③;④;⑤;⑥,其中是二元一次方程的是(

A.B.①④C.①③D.①②④⑥

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一水库大坝的横断面为梯形ABCD,坝顶宽6米,坝高10米,斜坡AB的坡度i1=1:3,斜坡CD的坡度i2=1:1.

(1)求斜坡AB的长(结果保留根号);

(2)求坝底AD的长度;

(3)求斜坡CD的坡角α.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC中,AB=4,BC=5,AC的长是一元二次方程x2﹣15x+54=0的一个根.

(1)求AC的长;

(2)在AC上找一点D,连接BD,使△ABD∽△ACB;

(3)以AC为一边作一个三角形ACM,求出sinAMC的值.(所作三角形自己设计)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点C是⊙O中直径AB上的一个动点,过点CCDAB交⊙O于点D,点M是直径AB上一固定点,作射线DM交⊙O于点N.已知AB=6cm,AM=2cm,设线段AC的长度为xcm,线段MN的长度为ycm.

小东根据学习函数的经验,对函数y随自变量的变化而变化的规律进行了探索.

下面是小东的探究过程,请补充完整:

(1)通过取点、画图、测量,得到了与y的几组值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

4

3.3

2.8

2.5

   

2.1

2

(说明:补全表格时相关数值保留一位小数)

(2)在图2中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象

(3)结合画出的函数图象,解决问题:当AC=MN时,x的取值约为   cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=﹣x2+bx+cc0)的图象与x轴交于AB两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M

1)求二次函数的解析式;

2)点P为线段BM上的一个动点,过点Px轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;

3)探索:线段BM上是否存在点N,使NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=10AC=8BC=6,以边AB的中点O为圆心,作半圆与AC相切,点PQ分别是边BC和半圆上的动点,连接PQ,则PQ长的最小值是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线轴分别交于点A和点BMOB上一点,若将△ABM沿AM折叠,点B恰好落在轴上的点B′处,试求出直线AM的解析式.

查看答案和解析>>

同步练习册答案