【题目】如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.
(1)求证:四边形EFGH是平行四边形;
(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.
【答案】(1)证明见解析.(2)证明见解析.
【解析】
试题分析:(1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.
(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由(1)知四边形HGFE是平行四边形,故四边形HGFE是矩形.
试题解析:证明:(1)在平行四边形ABCD中,∠A=∠C,
又∵AE=CG,AH=CF,
∴△AEH≌△CGF.
∴EH=GF.
在平行四边形ABCD中,AB=CD,AD=BC,
∴AB-AE=CD-CG,AD-AH=BC-CF,
即BE=DG,DH=BF.
又∵在平行四边形ABCD中,∠B=∠D,
∴△BEF≌△DGH.
∴GH=EF.
∴四边形EFGH是平行四边形.
(2)在平行四边形ABCD中,AB∥CD,AB=CD.
设∠A=α,则∠D=180°-α.
∵AE=AH,∴∠AHE=∠AEH=.
∵AD=AB=CD,AH=AE=CG,
∴AD-AH=CD-CG,即DH=DG.
∴∠DHG=∠DGH=.
∴∠EHG=180°-∠DHG-∠AHE=90°.
又∵四边形EFGH是平行四边形,
∴四边形EFGH是矩形.
科目:初中数学 来源: 题型:
【题目】某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是( )
A. y=0.5x+5000 B. y=0.5x+2500 C. y=﹣0.5x+5000 D. y=﹣0.5x+2500
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各组数中:①-22与(-2)2; ②(-3)2与-33; ③-(-32)与-32 ;④02019与02018;⑤(-1)2019与-(-1)2.其中结果相等的数据共有( )
A.1对B.2对C.3对D.4对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com