【题目】某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;
(1)求甲、乙型号手机每部进价为多少元?
(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.
(3)售出一部甲种型号手机,利润率为30%,乙种型号手机的售价为2520元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元充话费,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.
【答案】(1)每部甲种型号的手机进价2000元,每部乙种型号的手机进价1800元;(2)方案一:购进甲型8台,乙型12台;方案二:购进甲型9台,乙型11台;方案三:购进甲型10台,乙型10台;(3)m=120元.
【解析】
(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,根据题意建立方程组求解就可以求出答案;
(2)设购进甲种型号手机a部,则购进乙种型号手机(20-a)部,根据“用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台”建立不等式组,求出其解就可以得出结论;
(3)分别求得两种手机的利润,然后根据“使(2)中所有方案获利相同”求得m的值即可.
(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,
依题意得:.
解得:.
答:每部甲种型号的手机进价2000元,每部乙种型号的手机进价1800元;
(2)该店计划购进甲种型号的手机共a部,依题意得:
2000a+1800(20-a)≤38000.
解得:a≤10.
又∵a≥8的整数
∴a=8或9或10.
∴方案一:购进甲型8台,乙型12台;
方案二:购进甲型9台,乙型11台;
方案三:购进甲型10台,乙型10台;
(3)每部甲种型号的手机的利润:2000×30%=600元.
每部乙种型号的手机的利润:2520-1800=720元.
∵要使(2)中所有方案获利相同
∴m=720-600=120元.
科目:初中数学 来源: 题型:
【题目】光明中学组织全校1000名学生进行了校园安全知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图(不完整).
分组 | 频数 | 频率 |
50.5~60.5 | 10 | a |
60.5~70.5 | b | |
70.5~80.5 | 0.2 | |
80.5~90.5 | 52 | 0.26 |
90.5~100.5 | 0.37 | |
合计 | c | 1 |
请根据以上提供的信息,解答下列问题:
(1)直接写出频数分布表中a,b,c的值,补全频数分布直方图.
(2)上述学生成绩的中位数落在哪一组范围内?
(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校1000名学生中约有多少名获奖?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具店老板第一次用1000元购进一批文具,很快销售完毕,第二次购进时发现每件文具的进价比第一次上涨了2.5元,老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,已知两批文具的售价均为每件15元.
(1)第二次购进了多少件文具?
(2)文具店老板在这两笔生意中共盈利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=∠DOC=90°,OE平分∠AOD,反向延长射线OE至F.
(1)∠AOD和∠BOC是否互补?说明理由;
(2)射线OF是∠BOC的平分线吗?说明理由;
(3)反向延长射线OA至点G,射线OG将∠COF分成了4:3的两个角,求∠AOD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:不收制版费,每本收印刷费1.5元;若该校印制证书x本.
(1)当印制证书3000本时,甲厂的收费为 元,乙厂的收费为 元;
(2)请问印刷多少本证书时,甲乙两厂收费相同?
(3)你认为选择哪一家印刷厂更优惠?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+3与两坐标轴交于A,B两点,抛物线y=﹣x2+bx+c过A、B两点,且交x轴的正半轴于点C.
(1)直接写出A、B两点的坐标;
(2)求抛物线的解析式和顶点D的坐标;
(3)在抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程 的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y1=﹣x+b分别与x轴、y轴交于点A、点B,与直线l2:y2=x交于点C(2,2).
(1)若y1<y2,请直接写出x的取值范围;
(2)点P在直线l1:y1=﹣x+b上,且△OPC的面积为3,求点P的坐标?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com