【题目】如图,已知为三边垂直平分线的交点,且,则的度数为( )
A.B.C.D.
【答案】B
【解析】
延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.
延长AO交BC于D.
∵点O在AB的垂直平分线上.
∴AO=BO.
同理:AO=CO.
∴∠OAB=∠OBA,∠OAC=∠OCA.
∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.
∴∠BOD=2∠OAB,∠COD=2∠OAC.
∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.
∵∠A=50°.
∴∠BOC=100°.
故选:B.
科目:初中数学 来源: 题型:
【题目】通过对下面数学模型的研究学习,解决下列问题:
(模型呈现)(1)如图1,,,过点作于点,过点作于点.由,得.又,可以推理得到.进而得到 , .我们把这个数学模型称为“字”模型或“一线三等角”模型;
(模型应用)(2)①如图2,,,,连接,,且于点,与直线交于点是的中点;
②如图3,在平面直角坐标系中,点的坐标为,点为平面内任一点.若是以为斜边的等腰直角三角形,请直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.
(1)旋转中心是点 ,旋转角度是 度;
(2)若连结EF,则△AEF是 三角形;并证明;
(3)若四边形AECF的面积为25,DE=2,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC>60°,∠BAC<60°,以AB为边作等边△ABD(点C、D在边AB的同侧),连接CD.
(1)若∠ABC90°,∠BAC30°,求∠BDC的度数;
(2)当∠BAC2∠BDC时,请判断△ABC的形状并说明理由;
(3)当∠BCD等于多少度时,∠BAC2∠BDC恒成立.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在等边三角形中,为边上的高.
操作发现:(1)如图1,过点分别作,,垂足分别为.请直接写出和的数量关系;
(2)如图2,若点为上任意一点(不与重合),过点作,,垂足分别为.判断和的数量关系,并说明理由;
拓广探索:(3)如图3,点为等边三角形内任意一点,过点作,,,垂足分别为,探究和的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形的三个顶点的坐标分别为,,
(1)作出三角形关于轴对称的三角形
(2)点的坐标为 .
(3)①利用网络画出线段的垂直平分线;②为直线上上一动点,则的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆的直径,点O是圆心,点C是OA的中点,CD⊥OA交半圆于点D,点E是的中点,连接AE、OD,过点D作DP∥AE交BA的延长线于点P.
(1)求∠AOD的度数;
(2)求证:PD是半圆O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数(,是常数,)的图象过,两点.
(1)在图中画出该一次函数并求其表达式;
(2)若点在该一次函数图象上,求的值;
(3)把的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图形,并直接写出新函数图象对应的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,点D在线段AB上,点E在CD的延长线上,连接AE,AE=AC,AF平分∠EAB,交CE于点F,连接BF.
(1)求证:EF=BF;
(2)猜想∠AFC的度数,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com