【题目】(发现问题)
如图1,已知,以点为直角顶点,为腰向外作等腰直角、请你以为直角顶点、为腰,向外作等腰直角(不写作法,保留作图痕迹).连接、.那么与的数量关系是________.
(拓展探究)
如图2,已知,以、为边向外作正方形和正方形,连接、,试判断与之间的数量关系,并说明理由.
(解决问题)
如图3,有一个四边形场地,,,,,求的最大值.
【答案】发现问题:BD=CE,证明见详解;拓展探究:BD=CE,证明见详解;解决问题:BD的最大值为23.
【解析】
发现问题:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;由等腰直角三角形的性质,证出∠BAD=∠EAC,证明△BAD≌△EAC(SAS),即可得出BD=CE;
拓展探究:由正方形的性质,证出∠BAD=∠EAC,证明△BAD≌△EAC(SAS),即可得出BD=CE;
解决问题:以AB为边向外作等边三角形ABE,连接CE,由等边三角形的性质,证出△ACD是等边三角形,得出∠CAD=60°,AC=AD,证出∠BAD=∠EAC,证明△BAD≌△EAC(SAS),得出BD=CE;当C、B、E三点共线时,CE最大=BC+BE=23,得出BD的最大值为23.
发现问题:
解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:
∵△ABE与△ACD都是等腰直角三角形,
∴AB=AE,AD=AC,∠BAE=∠CAD=90°,
∴∠BAD=∠EAC,
在△BAD和△EAC中,
,
∴△BAD≌△EAC(SAS),
∴BD=CE,
故答案为:BD=CE;
拓展探究:
解:BD=CE;理由如下:如图:
∵四边形AEFB与四边形ACGD都是正方形,
∴AB=AE,AD=AC,∠BAE=∠CAD=90°,
∴∠BAD=∠EAC,
在△BAD和△EAC中,
,
∴△BAD≌△EAC(SAS),
∴BD=CE;
解决问题:
解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:
则∠BAE=60°,BE=AB=AE=8,
∵AD=CD,∠ADC=60°,
∴△ACD是等边三角形,
∴∠CAD=60°,AC=AD,
∴∠CAD+∠BAC=∠BAE+∠BAC,
即∠BAD=∠EAC,
在△BAD和△EAC中,
,
∴△BAD≌△EAC(SAS),
∴BD=CE;
当C、B、E三点共线时,CE最大=BC+BE=15+8=23,
∴BD的最大值为23.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与轴相交于A、B两点,与轴相交于点C,OA=1,OC=3,连接BC.
(1)求b的值;
(2)点D是直线BC上方抛物线一动点(点B、C除外),当△BCD的面积取得最大值时,在轴上是否存在一点P,使得|PB﹣PD|最大,若存在,请求出点P的坐标;若不存在,请说明理由.
(3)在(2)的条件下,若在平面上存在点Q,使得以点B、C、D、Q为顶点的四边形为平行四边形,请直接写出点Q坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正确的结论是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是________.(仅添加一对相等的线段或一对相等的角)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求证:AD=BC;
(2)求证:△AGD∽△EGF;
(3)如图2,若AD、BC所在直线互相垂直,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解题:
定义:如果一个数的平方等于-1,记为=-1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似.例如,计算:
(1-i )+(2+3i )=(1+2)+(-1+3)i=3+2i;
(1+i )×(3-i )=1×3-i+3×i-=3+(-1+3)i+1=4+2i;
根据以上信息,完成下列问题:
(1)填空:=_______,=________;=________;
(2)计算:(2+i )×(1-3i );
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=40°,求∠BDE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.
(1)求证:四边形CEDF是平行四边形;
(2)①当AE= cm时,四边形CEDF是矩形;
②当AE= cm时,四边形CEDF是菱形;(直接写出答案,不需要说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.
(1) 观察并猜想AP与CQ之间的大小关系,并证明你的结论;
(2) 若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com