精英家教网 > 初中数学 > 题目详情

【题目】如图,OAO的半径,点E为圆内一点,且OAOEABO的切线,EBO于点FBQAF于点Q

(1)如图1,求证:OEAB

(2)如图2,若ABAO,求的值;

(3)如图3,连接OF,∠EOF的平分线交射线AF于点P,若OA2cosPAB,求OP的长.

【答案】(1)证明见解析;(2)(3)

【解析】

1)利用切线的性质证得∠AOE+OAB=180°,利用同旁内角互补两直线平行证得OEAB
2)过O点作OCAF于点C,证得△AOC≌△BAQAAS)后得到AC=BQ,进一步得到AF=2AC=2BQ,从而求得两条线段的比;
3)过O点作OCAF于点C,解直角三角形求得OC的长,然后证得△POC为等腰直角三角形,利用等腰三角形的性质求得线段OP 的长即可.

解:(1)

OAOE

∴∠AOE=90°

ABO的切线,OAO的半径,

OAAB

∴∠OAB=90°

∴∠AOE+∠OAB =180°

OEAB.

(2)如图2,过O点作OCAF于点C

AF=2ACOCA=90°

∴∠AOC+∠OAC =90°

OAAB

∴∠OAC+∠CAB =90°

∴∠AOC=CAB

BQAF

∴∠AQB =90°

∴∠ACO =AQB

OA =AB

∴△AOC≌△BAQ(AAS)

AC =BQ

AF=2AC =2BQ

(3)如图3:过O点作OCAF于点C

(2)AOC =PAB

Rt△AOC中, OA =2

OC===

OA=OFOCAF于点C

∴∠COF=AOF

OP平分EOF

∴∠POF=EOF

∴∠POC=COF+∠POF=AOF+EOF=EOA=45°

∴△POC为等腰直角三角形

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在奉贤创建文明城区的活动中,有两段长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度y(米)与施工时间x(时)之间关系的部分图象.请解答下列问题:

1)求乙队在2≤x≤6的时段内,yx之间的函数关系式;

2)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12/时,结果两队同时完成了任务.求甲队从开始施工到完工所铺设的彩色道砖的长度为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=﹣x2+bx+c的图象经过AE两点,且点E的坐标为(﹣0),以0C为直径作半圆,圆心为D

1)求二次函数的解析式;

2)求证:直线BE是⊙D的切线;

3)若直线BE与抛物线的对称轴交点为PM是线段CB上的一个动点(点M与点BC不重合),过点MMNBEx轴与点N,连结PMPN,设CM的长为tPMN的面积为S,求St的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次统计共抽查了   名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为   

(2)将条形统计图补充完整;

(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?

(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACBC6EAC边上的点且AE2EC,点DBC边上且满足BDDE,设BDySABCx,则yx的函数关系式为(  )

A.yx2+B.yx2+

C.yx2+2D.yx2+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴交于AB两点,交反比例函数于CD两点,DEx轴于点E,已知C点的坐标是(6-1)DE=3

(1)求反比例函数与一次函数的解析式

(2)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值.

(3)OAD的面积SOAD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C上,CDOA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,菱形ABCD位于平面直角坐标系中,抛物线yax2+bx+c经过菱形的三个顶点ABC,已知A(﹣30)、B0,﹣4).

1)求抛物线解析式;

2)线段BD上有一动点E,过点Ey轴的平行线,交BC于点F,若SBOD4SEBF,求点E的坐标;

3)抛物线的对称轴上是否存在点P,使△BPD是以BD为斜边的直角三角形?如果存在,求出点P的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把两个全等的矩形ABCDEFGH如图1摆放(点D和点G重合,点C和点H重合),点ADG)在同一条直线上,AB6cmBC8cm.如图2ABC从图1位置出发,沿BC方向匀速运动,速度为1cm/sACGH交于点P;同时,点Q从点E出发,沿EF方向匀速运动,速度为1cm/s.点Q停止运动时,ABC也停止运动.设运动时间为ts)(0t6).

1)当t为何值时,CQFH

2)过点QQMFH于点N,交GF于点M,设五边形GBCQM的面积为ycm2),求yt之间的函数关系式;

3)在(2)的条件下,是否存在某一时刻,使点M在线段PC的中垂线上?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案