【题目】如图,以△ABC的边AB为直径作⊙O,且顶点C在⊙O上,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.
(1)求证:CE是⊙O的切线;
(2)若AC=8,BC=6,求BD和CE的长.
【答案】(1)证明见解析;(2),.
【解析】
(1)连接OC,证∠OCE=90°即可;
(2)根据勾股定理可得AB=10,再由tanA=可得BD的长,然后根据直角三角形斜边上的中线等于斜边一半的性质即得CE的长.
(1)证明:连接OC,如图所示:
∵BD是⊙O的切线,
∴∠CBE=∠A,∠ABD=90°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACO+∠BCO=90°,∠BCD=90°,
∵E是BD中点,
∴CE=BD=BE,
∴∠BCE=∠CBE=∠A,
∵OA=OC,
∴∠ACO=∠A,
∴∠ACO=∠BCE,
∴∠BCE+∠BCO=90°,
即∠OCE=90°,
∴CE是⊙O的切线;
(2)解:∵∠ACB=90°,
∴AB=,
∵tanA=,
∴BD=AB=,
∴CE=BD=.
科目:初中数学 来源: 题型:
【题目】如图,在 Rt△AOB 中,∠AOB=90°,OA=3,OB=4,线段 OA’绕点 O 顺时针旋转ɑ角(0≤ɑ≤180°),OA’交边 AB 于点 F.
(1)当旋转ɑ角度后,A’点恰好落在 AB 上,记为 C 点,求 CB 的长度;
(2)当 OA’绕点 O 旋转与 AB 平行时,记为 OG,连接 CG,交 OB 于 E,分别求出 OE 长度和∠COB 的正弦值;
(3)在旋转过程中,请直接写出的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( )
A. 50,50 B. 50,30 C. 80,50 D. 30,50
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农作物的生长率p与温度t(℃)有如下关系:如图,当10≤t≤25时可近似用函数p=t﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.
(1)求h的值.
(2)按照经验,该作物提前上市的天数m(天)与生长率p之间满足已学过的函数关系,部分数据如下:
生长率p | 0.2 | 0.25 | 0.3 | 0.35 |
提前上市的天数m(天) | 0 | 5 | 10 | 15 |
求:①m关于p的函数表达式;
②用含t的代数式表示m.
③天气寒冷,大棚加温可改变农作物生长速度.大棚恒温20℃时每天的成本为100元,计划该作物30天后上市,现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若欲加温到25<t≤37,由于要采用特殊方法,成本增加到400元/天.问加温到多少度时增加的利润最大?并说明理由.(注:农作物上市售出后大棚暂停使用)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若关于x的二次函数y=ax2+bx+c(a,b,c为常数)与x轴交于两个不同的点A(x1,0),B(x2,0)与y轴交于点C,其图象的顶点为点M,O是坐标原点.
(1)若A(﹣2,0),B(4,0),C(0,3)求此二次函数的解析式并写出二次函数的对称轴;
(2)如图,若a>0,b>0,△ABC为直角三角形,△ABM是以AB=2的等边三角形,试确定a,b,c的值;
(3)设m,n为正整数,且m≠2,a=1,t为任意常数,令b=3﹣mt,c=﹣3mt,如果对于一切实数t,AB≥|2t+n|始终成立,求m、n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,且AF=DC,连接CF.
(1)求证:D是BC的中点;
(2)若∠BAC=90°,求证:四边形ADCF是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.
请你根据图中信息,回答下列问题:
(1)本次共调查了 名学生.
(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于 度.
(3)补全条形统计图(标注频数).
(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为 人.
(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com